تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,099,100 |
تعداد دریافت فایل اصل مقاله | 97,206,671 |
برآورد مشخصه های برف به روش های موجک و زمین آمار (مطالعۀ موردی: حوضه های آبریز شمال غرب کشور) | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 4، دوره 49، شماره 3، مهر 1396، صفحه 409-422 اصل مقاله (1.33 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2017.209344.1006877 | ||
نویسندگان | ||
مریم بیات ورکشی* 1؛ علیرضا ایلدرومی2؛ حمید نوری3؛ حمید زارع ابیانه4 | ||
1استادیار گروه علوم و مهندسی خاکشناسی، دانشکدة کشاورزی، دانشگاه ملایر، ملایر، ایران | ||
2دانشیار گروه مهندسی آبخیزداری دانشکدة محیط زیست و منابع طبیعی، دانشگاه ملایر، ملایر، ایران | ||
3استادیار گروه مهندسی آبخیزداری، دانشکده محیط زیست و منابع طبیعی، دانشگاه ملایر، ملایر، ایران | ||
4دانشیار گروه مهندسی آب، دانشکدة کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
چکیده | ||
در این تحقیق، با بهکارگیری تبدیل موجک، به بررسی روش شبکة عصبی- موجک و زمینآمار در برآورد توزیع مکانی سه مؤلفة ارتفاع برف، چگالی برف، و ارتفاع آب معادل برف حوضههای آبریز شمال غرب کشور پرداخته شد. بدین منظور، با مدنظر قراردادن اطلاعات اندازهگیری چهارسالة (1387ـ1387 تا 1390ـ1391) سه استان آذربایجان شرقی، آذربایجان غربی، و اردبیل توانایی روش شبکة عصبی- موجک و زمینآمار ارزیابی شد. مقایسة روشهای مختلف زمینآمار نشان از برتری روش کریجینگ معمولی با نیمتغییرنمای گوسین برای مؤلفههای چگالی برف، آب معادل برف، و ارتفاع برف با آمارة میانگین مجذور مربعات خطای استاندارد (NRMSE) بهترتیب 259/0، 429/0، و 390/0 بود. با کاربرد روش شبکة عصبی- موجک خطای برآورد هر سه مؤلفه بسیار کاهش یافت؛ بهطوریکه مقدار NRMSE برای مؤلفههای چگالی برف، آب معادل برف، و ارتفاع برف بهترتیب 122/0، 002/0، و 001/0 بهدست آمد. ضمن آنکه دقت شبیهسازی نقاط حدی مؤلفههای برف به وسیلة روش شبکة عصبی- موجک افزایش یافت. بنابراین، کاربرد شبکة عصبی- موجک در مقایسه با زمینآمار در برآورد توزیع مکانی مشخصههای برف توصیه میشود. | ||
کلیدواژهها | ||
آب معادل برف؛ چگالی برف؛ زمینآمار؛ ضخامت برف؛ عصبی- موجک | ||
عنوان مقاله [English] | ||
Estimation of Snow Characteristics by Wavelet and Geostatistic Methods (Case Study: North-West Basins) | ||
نویسندگان [English] | ||
Maryam Bayat Varkeshi1؛ Alireza Ildoromi2؛ Hamid Nouri3؛ Hamid Zareabyaneh4 | ||
1Assistant Professor of Water Engineering, Faculty of Agriculture, University of Malayer, Iran | ||
2Associate Professor, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran | ||
3Assistant professor in Climatology, Malayer University, Malayer, Iran | ||
4Associate Professor of Irrigation and Drainage Engineering, Agriculture Faculty Bu-Ali Sina University, Hamedan, Iran | ||
چکیده [English] | ||
Introduction Snow is an important hydrological phenomenon and snow water equivalent is suitable water resource in many parts of the world. Snow and snow water equivalent have a significant contribution in streamflow and groundwater recharge. For this reason, it is important modeling of snow accumulation and melting. So, estimation of snow spatial distribution in different time scales is one of the key stages in the studies of water resources. Due to the successful application of wavelet network modelmethod in different sciences, the purpose of this study is to estimate the snow characteristics. In this study, the spatial analysis of snow water equivalent, snow depth and snow density, as one of major components of the water balance, is evaluated in watershed of the north-west country. Materials and methods In this study, we have used geostatistical methods to estimate spatial distribution of snow height, snow density and snow water equivalent. Thus, by measurement data of three provinces of Azabbayjan- Sharghi, Azarbayjan- Gharbi and Ardebil during four years (2008-2012) in north-west, we have also evaluated capability of Artificial Neural Network, Wavelet model (Wavelet-ANN) and geostatistical methods. Figure 1 shows location of study area and the data. Figure 1. Location of study area For estimation of snow characteristics in non-measurement estimated points, we have used the evaluation by longitude and latitude parameters. The results the comparison between each geostatistical methods has been conducted by the Normal Root Mean Square Error (NRMSE) index. (1) Where Xi, Yi: ith are estimated snow data, n: number examples. The drawing of zoning maps has been carried out by ArcGIS. Results and discussion Before zoning, correlation coefficient values of snow density, snow height and snow water equivalent as dependent geographic properties has been obtained in SPSS (Table 1). Table 1. The correlation coefficient matrix of used variables Longitude Latitude Elevation Snow density Snow water equivalent Snow height Longitude 1 -0.456** 0.276* 0.167 0.270* 0.218 Latitude -0.456** 1 0.105 -0.053 -0.107 -0.103 Elevation 0.276* 0.105 1 0.221 0.489** 0.500** Snow density 0.167 -0.053 0.221 1 0.410** 0.035 Snow water equivalent 0.270* -0.107 0.489** 0.410** 1 0.893** Snow height 0.218 -0.103 0.500** 0.035 0.893** 1 In addition to Table 2, elevation and longitude with correlation coefficients of 0.489 and 0.270, respectively, have the most effect on snow water equivalent. The positive sign indicates straight relative relation of elevation and longitude with snow water equivalent. As a general result, each three snow characteristics have positive relationship with elevation. It is because the elevation is an important topography factor and increase in height leads to decreased air temperature and enhancement of snow. The results indicated that the Ordinary Kriging method with Gaussian semi-variogram have had the best results than all other geostatistical methods. The results have indicated that mean accurate kriging method with Guassian semi variogram for snow density, snow water equivalent and snow height during four years based on Normal Root Mean Square Error (NRMSE) are 0.259, 0.429 and 0.390, respectively. The results of application modeling of Wavelet-ANN have indicated that the NRMSE values for snow density, snow water equivalent and snow height are 0.122, 0.002 and 0.001, respectively. Therefore, it can be said that accuracy of Wavelet-ANN method in estimation of snow characteristics is more than geostatistical methods. Also, the accuracy of both methods in simulation of snow height is the most. Another results illustrated that with applying Wavelet-ANN, difference between minimum and maximum values of snow characteristics is decreased. Conclusion The purpose of this research is to develop interpolation methods to assess the estimation of snow components in the non-measurement points. In addition to equipment and preparation problems of snow stations, it is necessary to use modern methods to estimate the snow spatial distribution. The results of this study have also indicated that in the study area and in a four years period, ordinary kriging has given better results than other geostatistical methods. But, the difference in the results of geostatistical methods with Wavelet-ANN in estimation of snow characteristics is high. Applying wavelet-ANN method has decreased error values. Thus, it is recommended to use Wavelet-ANN method in estimation of snow characteristics of study area. Since the used independent variables are located in available variable categories (access to the data at a lower cost and higher accuracy), we can expect good results with high accuracy. | ||
کلیدواژهها [English] | ||
arcgis, Geostatistical, Snow water equivalent, snow density, Snow depth | ||
مراجع | ||
ابدام، س. و فتحزاده، ع. (1392). ارزیابی روشهای زمینآماری به منظور برآورد توزیع مکانی عمق برف در مناطق نیمهخشک، مطالعة موردی حوضة آبخیز سخوید، مجلة مهندسی آبیاری و آب، 4(13): 113-124. حسنزاده، ی.؛ عبدی کردانی، ا. و فاخریفرد، ا. (1391). پیشبینی خشکسالی با استفاده از الگوریتم ژنتیک و مدل ترکیبی شبکة عصبی -موجکی،آب و فاضلاب، 3: 48-58. رجایی، ط. و زینیوند، ا. (1393). مدلسازی تراز آب زیرزمینی با بهرهگیری از مدل هیبرید موجک- شبکة عصبی مصنوعی (مطالعة موردی: دشت شریفآباد)، نشریةمهندسی عمران و محیط زیست، 44 (4): 63-77. زارع ابیانه، ح. (1391). برآورد توزیع مکانی ارتفاع آب معادل برف و چگالی برف حوضههای آبخیز استان آذربایجان غربی، مجلةمهندسی منابع آب، 5: 1-10. شفایی، م.؛ فاخریفرد، ا.؛ دربندی، ص. و قربانی، م.ع. (1392). پیشبینی جریان روزانة رودخانه با استفاده از مدل هیبرید موجک و شبکة عصبی (مطالعة موردی: ایستگاه هیدرومتری ونیار در حوضة آبریز آجیچای)، مهندسی آبیاری و آب، 4(14): 113-128. طوفانی، پ.؛ مساعدی، ا. و فاخریفرد، ا. (1390). پیشبینی بارندگی با استفادة مستقیم از نظریة موجک (مطالعة موردی: ایستگاه بارانسنجی زرینگل استان گلستان)، نشریة آب و خاک (علوم و صنایع کشاورزی)، 25(5): 1217-1226. عباسی جندانی، ش. و فتحزاده، ع. (1394). ارزیابی روشهای درونیابی در برآورد آب معادل برف، مجلةمنابع طبیعی ایران، 68(4): 779-793. فتحزاده، ع. (1387). برآورد توزیع مکانی آب معادل برف در حوضة آبریز کرج با استفاده از سنجش از دور و مدل بیلان انرژی، پایاننامة دکتری، دانشگاه تهران. معروفی، ص.؛ گلمحمدی، گ.؛ محمدی، ک. و زارع ابیانه، ح. (1388). ارزیابی روشهای زمینآمار در برآورد توزیع مکانی بارش استان همدان، مجلةدانش آب و خاک، 19: 147-164. نجفی، م.ر.؛ شیخیوند، ج. و پرهمت، ج. (1383). برآورد رواناب حاصل از ذوب برف در حوضههای برفگیر با استفاده از مدل SRM (مطالعة موردی حوضة سد مهاباد)، علوم کشاورزی و منابع طبیعی، 11(3): 111-122. وزیری، ف. (1382). هیدرولوژی کاربردی در ایران: کتاب دوم: شناسایی یخچالهای طبیعی در ایران، انتشارات سازمان مدیریت و برنامهریزی کشور. وفاخواه، م.؛ محسنی ساروی، ف.؛ مهدوی، س. و علویپناه، ک. (1387). کاربرد زمینآمار در برآورد عمق و چگالی برف در حوضة آبریز اورازان، مجلة علوم و مهندسی آبخیزداری ایران، 2(4): 49-55. Abbasi Jondani, S. and Fathzadeh, A. )2015(. Assessing of interpolation methods in order to snow water equivalent estimation, Range and Watershed Management, 68(4): 779-793. (In Persian)
Balk, B. and Elder, K. (2000). Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed, Water Resources Research, 36: 13-26.
Bloschl, G.; Kirnbauer, R. and Gutknecht, D. (1991). Distribution Snowmelt Simulations in an Alpine Catchment's: 1. Model Evaluation on the Basis of Snow Cover Patterns, Water Resources Research, 27: 3171-3179.
Cannas, B.; Fanni, A.; See, L. and Sias, G. (2006). Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning, Phys Chem Earth, 31(18): 1164-1171.
Cline, D.W.; Bales, R.C. and Dozier, J. (1998). Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling, Water Resour. Res., 34: 1275-85.
Dariane, A.B.; Azimi, S. and Zakerinejad, A.J. (2014). Artificial neural network coupled with wavelet transform for estimating snow water equivalent using passive microwave data, Journal of Earth System Science, 123(7): 1591-1601.
Ebdam, S. and Fathzadeh, A. (2013). Geostatistical methods to estimate the spatial distribution of snow depth in the watershed Skhvyd, Water and Irrigation Engineering Journal, 4(13): 113-124. (In Persian)
Elder, K.; Dozier, J. and Michaelsen, J. (1991). Snow accumulation and distribution in an alpine watershed, Water Resources Research, 27: 1541-1552.
Fathzadeh, A. (2008). Estimate the spatial distribution of snow water equivalent in Karaj basin by remote sensing and energy balance model, P.h.D. Thesis, Tehran University. (In Persian)
Gentile, A. and Messina, A. (2003). On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams, International Journal of Solids and Structures, 40: 295-315.
Hassanzadeh, Y.; Abdi Kordani, A. and Fakheri Fard, A. )2012(. Drought Forecasting Using Genetic Algorithm and Conjoined Model of Neural Network-Wavelet, Water and Wastewater, 3: 48-58. (In Persian)
Kim, T.W. and Valdes, J.B. (2003). Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks, J. of Hydrologic Engineering, 8(6): 319-328.
Kisi, O. (2008). Stream flow forecasting using neuro-wavelet technique, Hydrol. Process., 22: 4142-4152.
Mallat, S. (1989). Throries for multiresolution signal decomposition: the wavelet representation, IEEE Pattern Anal. and Machine Intell., 11(7): 674-693.
Marchand, W.D. and Killingtveit, A. (2001). Analyses of the Relation between Spatial Snow Distribution and Terrain Characteristics, 58th Eastern Snow Conference Ottawa, Ontario, Canada.
Marofi, S.; Golmohammadi, G.; Mohammadi, K. and Zare Abyaneh, H. (2009). Evaluation of Geostatisical Methods for Estimating Spatial Distribution of Annual Rainfall Using GIS Media in Hamedan Province, Iran, Water and Soil Science, 19: 147-164. (In Persian)
Marofi, S.; Tabari, H. and Zare Abyaneh, H. (2011). Predicting spatial distribution of snow water equivalent using multivariate non-linear regression and computational intelligence methods, Water Resources Management, 25: 1417–1435.
Merry, R.J.E. (2005). Wavelet Theory and Applications, A literature study, Eindhoven University of Technology Department of Mechanical Engineering Control Systems Technology Group.
Misiti, M.; Misiti, Y.; Oppenheim, G. and Poggi, J.M. (1996). Wavelet Toolbox, User's Guide, The Mathworks.
Najafi, M.R.; Sheikhivand, J. and Porhemmat, J. (2004). Estimation of runoff in snow cover mountainous basin by using SRM model (A case study of Mahabad Basin), Agriculture science and Natural Resources, 11(3): 111-12. (In Persian)
Nourani, V.; Komasi, M. and Mano, A. (2009). A Multivariate ANN-Wavelet Approachfor Rainfall–Runoff Modeling, Water Resour Manage., 23: 2877-2894.
Rajaee, T. and Zeynivand, A. )2014(. Modeling of Groundwater Level using ANN–Wavelet Hybrid Model (Case Study: Sharif Abad Plain), Journal of Civil and Environmental Engineering, 44(4): 73-77. (In Persian).
Rioul, O. and Vetterli, M. (1991). Wavelets and signal processing, IEEE SP Magazine, 14-38.
Shaban, A.; Faour, G.H.; Khawlie, M. and Abdallah, C. (2004). Remote sensing application to estimate volume of water in the from of snow on Mount Lebanon, Hydrological sciences Journal, 49(4): 643-653.
Shafaei, M.; FakheiFard, A.; Darbandi, S. and Ghorbani, M.A. (2013). Predicrion Daily Flow of Vanyar Station Using ANN and Wavelet Hybrid Procedure, Water and Irrigation Enigineering, 4(14): 113-128. (In Persian)
Sifuzzaman, M.; Islam, M.R. and Ali, M.Z. (2009). Application of Wavelet Transform and its Advantages Compared to Fourier Transform, Journal of Physical Sciences, 13: 121-134.
Tapsoba, D.; Fortin, V.; Anctil, F. and Hache, M. (2008). Use of the kriging technique with external drift for a map of the water equivalent of snow, application to the Gatineau River Basin, Canadian Journal of Civil Engineering, 32(1): 289-297.
Toufani, P.; Mosaedi, A. and Fakheri Fard, A. )2011(. Prediction of Precipitation Applying Wavelet Network Model (Case study: Zarringol station, Golestan province, Iran), Journal of Water and Soil, 25 (5): 1217-1226. (In Persian)
Tryhorn, L. and DeGaetano, A. (2012). A methodology for statistically downscaling seasonal snow cover characteristics over the Northeastern United States, International journal of Climatology, 33(12): 2728-2743.
Vafakhah, M.; Mohseni, F.; Mahdavi, S. and Alavi panah, K. (2008). The use of geostatistics for estimation of snow depth and density in Orazan basin, Journal of Watershed Management Science and Engineering, 2(4): 49-55. (In Persian)
Wang W. and Ding J. (2003). Wavelet Network Model and Its Application to the Prediction of Hydrology, Nature and Science, 1(1): 67-71.
Vaziri, F. (2003). Applied Hydrology in Iran,: The Management and Planning Organization (In Persian).
Zareabyaneh, H. (2013). Estimation of Spatial Distribution of Snow Water Equivalent and Snow Density of the West Azarbaijan Province’s Basins, Water Engineering, 5: 1-10. (In Persian) | ||
آمار تعداد مشاهده مقاله: 607 تعداد دریافت فایل اصل مقاله: 483 |