Nano-Hybrids Based on Surface Modified Reduced Graphene Oxide Nanosheets and Carbon Nanotubes and a Regioregular Polythiophene
Journal of Ultrafine Grained and Nanostructured Materials
مقاله 7 ، دوره 51، شماره 1 ، شهریور 2018، صفحه 60-70 اصل مقاله (965.1 K )
نوع مقاله: Research Paper
شناسه دیجیتال (DOI): 10.22059/jufgnsm.2018.01.08
نویسندگان
Samira Agbolaghi* 1 ؛ Saleheh Abbaspoor 2
1 Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
2 Faculty of Polymer Engineering and Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
چکیده
The multi-walled carbon nanotubes (CNTs) and reduced graphene oxide (rGO) nanosheets were functionalized with 2-hydroxymethyl thiophene (CNT-f -COOTh) and 2-thiophene acetic acid (rGO-f -TAA) and grafted with poly(3-dodecylthiophene) (CNT-g -PDDT and rGO-g -PDDT) to manipulate the orientation and patterning of crystallized regioregular poly(3-hexylthiophene) (P3HT). Distinct nano-hybrid structures including double-fibrillar (5.11−5.18 S/cm), shish-kebab (2.19−2.28 S/cm), and stem-leaf (6.96−7.51 S/cm) were developed using modified CNTs and P3HT. The most effective parameter on morphology of donor-acceptor supramolecules was the surface functionalization and grafting. The electrical conductivities of supramolecules based on P3HT and rGO, rGO-f -TAA, and rGO-g -PDDT ranged in 3.81−3.87, 3.91−3.95, and 10.67−10.70 S/cm, respectively. P3HT chains preferred to interact with their thiophene rings with bared rGO and CNT surfaces, resulting in a conventional face-on orientation. In P3HT/rGO-f -TAA and P3HT/CNT-f -COOTh supramolecular nanostructures patterned with P3HT, the orientation of P3HT chains changed from face-on to edge-on, originating from the strong interactions between the hexyl side chains of P3HTs and functional groups. Nano-hybrids based on grafted rGO demonstrated a patched-like morphology composed of flat-on P3HTs with main backbones perpendicular to the substrate. Based on the ultraviolet-visible and photoluminescence analyses, the flat-on orientation was the best for P3HT chains assembled onto CNT and rGO, which was acquired for CNT-g -PDDT and rGO-g -PDDT nano-hybrids.
کلیدواژهها
Carbon Nanotube ؛ Reduced Graphene Oxide, Orientation, Grafting, Functionalization, Nano-hybrid
مراجع
1. Acevedo-Cartagena DE, Zhu J, Trabanino E, Pentzer E, Emrick T, Nonnenmann SS, et al. Selective Nucleation of Poly(3-hexyl thiophene) Nanofibers on Multilayer Graphene Substrates. ACS Macro Letters. 2015;4(5):483-7.
2. Yang Z, Lu H. Nonisothermal crystallization behaviors of poly(3-hexylthiophene)/reduced graphene oxide nanocomposites. Journal of Applied Polymer Science. 2012;128(1):802-10.
3. Skrypnychuk V, Boulanger N, Yu V, Hilke M, Mannsfeld SCB, Toney MF, et al. Enhanced Vertical Charge Transport in a Semiconducting P3HT Thin Film on Single Layer Graphene. Advanced Functional Materials. 2014;25(5):664-70.
4. Wang G, Swensen J, Moses D, Heeger AJ. Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. Journal of Applied Physics. 2003;93(10):6137-41.
5. Yang H, Shin TJ, Yang L, Cho K, Ryu CY, Bao Z. Effect of Mesoscale Crystalline Structure on the Field-Effect Mobility of Regioregular Poly(3-hexyl thiophene) in Thin-Film Transistors. Advanced Functional Materials. 2005;15(4):671-6.
6. Surin M, Leclère P, Lazzaroni R, Yuen JD, Wang G, Moses D, et al. Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors. Journal of Applied Physics. 2006;100(3):033712.
7. Gargi D, Kline RJ, DeLongchamp DM, Fischer DA, Toney MF, O’Connor BT. Charge Transport in Highly Face-On Poly(3-hexylthiophene) Films. The Journal of Physical Chemistry C. 2013;117(34):17421-8.
8. Jimison LH, Himmelberger S, Duong DT, Rivnay J, Toney MF, Salleo A. Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films. Journal of Polymer Science Part B: Polymer Physics. 2013;51(7):611-20.
9. Porzio W, Scavia G, Barba L, Arrighetti G, Milita S. Depth-resolved molecular structure and orientation of polymer thin films by synchrotron X-ray diffraction. European Polymer Journal. 2011;47(3):273-83.
10. Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007;6(3):183-91.
11. Novoselov KS, Morozov SV, Mohinddin TMG, Ponomarenko LA, Elias DC, Yang R, et al. Electronic properties of graphene. physica status solidi (b). 2007;244(11):4106-11.
12. Mihailetchi VD, van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, et al. Electron Transport in a Methanofullerene. Advanced Functional Materials. 2003;13(1):43-6.
13. Kim DH, Lee HS, Shin H-J, Bae Y-S, Lee K-H, Kim S-W, et al. Graphene surface induced specific self-assembly of poly(3-hexylthiophene) for nanohybrid optoelectronics: from first-principles calculation to experimental characterizations. Soft Matter. 2013;9(22):5355.
14. Zhang Y, Tan Y-W, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature. 2005;438(7065):201-4.
15. Novoselov KS. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306(5696):666-9.
16. Pang S, Hernandez Y, Feng X, Müllen K. Graphene as Transparent Electrode Material for Organic Electronics. Advanced Materials. 2011;23(25):2779-95.
17. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano. 2010;4(5):2865-73.
18. Liu W, Jackson BL, Zhu J, Miao C-Q, Chung C-H, Park YJ, et al. Large Scale Pattern Graphene Electrode for High Performance in Transparent Organic Single Crystal Field-Effect Transistors. ACS Nano. 2010;4(7):3927-32.
19. Kang SJ, Kim B, Kim KS, Zhao Y, Chen Z, Lee GH, et al. Inking Elastomeric Stamps with Micro-Patterned, Single Layer Graphene to Create High-Performance OFETs. Advanced Materials. 2011;23(31):3531-5.
20. Yu WJ, Lee SY, Chae SH, Perello D, Han GH, Yun M, et al. Small Hysteresis Nanocarbon-Based Integrated Circuits on Flexible and Transparent Plastic Substrate. Nano Letters. 2011;11(3):1344-50.
21. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457(7230):706-10.
22. Choi D, Choi M-Y, Choi WM, Shin H-J, Park H-K, Seo J-S, et al. Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes. Advanced Materials. 2010;22(19):2187-92.
23. Huang G, Hou C, Shao Y, Wang H, Zhang Q, Li Y, et al. Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors. Scientific Reports. 2014;4(1).
24. Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, et al. Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes. Science. 2014;343(6172):752-4.
25. Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science. 2013;342(6158):614-7.
26. Chunder A, Liu J, Zhai L. Reduced Graphene Oxide/Poly(3-hexylthiophene) Supramolecular Composites. Macromolecular Rapid Communications. 2010;31(4):380-4.
27. Zhou X, Chen Z, Qu Y, Su Q, Yang X. Fabricating graphene oxide/poly(3-butylthiophene) hybrid materials with different morphologies and crystal structures. RSC Advances. 2013;3(13):4254.
28. Lightcap IV, Kamat PV. Graphitic Design: Prospects of Graphene-Based Nanocomposites for Solar Energy Conversion, Storage, and Sensing. Accounts of Chemical Research. 2012;46(10):2235-43.
29. Li S-S, Tu K-H, Lin C-C, Chen C-W, Chhowalla M. Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano. 2010;4(6):3169-74.
30. Gao Y, Yip H-L, Chen K-S, O’Malley KM, Acton O, Sun Y, et al. Surface Doping of Conjugated Polymers by Graphene Oxide and Its Application for Organic Electronic Devices. Advanced Materials. 2011;23(16):1903-8.
31. Liu X, Kim H, Guo LJ. Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells. Organic Electronics. 2013;14(2):591-8.
32. Wang Q, Cui X, Chen J, Zheng X, Liu C, Xue T, et al. Well-dispersed palladium nanoparticles on graphene oxide as a non-enzymatic glucose sensor. RSC Advances. 2012;2(15):6245.
33. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, et al. Detection of individual gas molecules adsorbed on graphene. Nature Materials. 2007;6(9):652-5.
34. Choi BG, Park H, Park TJ, Yang MH, Kim JS, Jang S-Y, et al. Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors. ACS Nano. 2010;4(5):2910-8.
35. Huang L, Huang Y, Liang J, Wan X, Chen Y. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Research. 2011;4(7):675-84.
36. Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles MD, et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Applied Physics Letters. 2006;88(14):142102.
37. Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, et al. Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene. Advanced Materials. 2008;20(20):3924-30.
38. Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nature Photonics. 2010;4(9):611-22.
39. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology. 2008;3(6):327-31.
40. Watcharotone S, Dikin DA, Stankovich S, Piner R, Jung I, Dommett GH, Evmenenko G, Wu SE, Chen SF, Liu CP, Nguyen ST. Graphene− silica composite thin films as transparent conductors. Nano letters. 2007 Jul 11;7(7):1888-92.
41. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials. 2005;4(11):864-8.
42. Zhou X, Yang X. Improved dispersibility of graphene oxide in o-dichlorobenzene by adding a poly(3-alkylthiophene). Carbon. 2012;50(12):4566-72.
43. Kausar A. A Study on Poly(vinyl alcohol-co-ethylene)-graft-Polystyrene Reinforced with Two Functional Nanofillers. Polymer-Plastics Technology and Engineering. 2015;54(7):741-9.
44. Lu R, Christianson C, Kirkeminde A, Ren S, Wu J. Extraordinary Photocurrent Harvesting at Type-II Heterojunction Interfaces: Toward High Detectivity Carbon Nanotube Infrared Detectors. Nano Letters. 2012;12(12):6244-9.
45. Kanai Y, Grossman JC. Role of Semiconducting and Metallic Tubes in P3HT/Carbon-Nanotube Photovoltaic Heterojunctions: Density Functional Theory Calculations. Nano Letters. 2008;8(3):908-12.
46. Schuettfort T, Nish A, Nicholas RJ. Observation of a Type II Heterojunction in a Highly Ordered Polymer−Carbon Nanotube Nanohybrid Structure. Nano Letters. 2009;9(11):3871-6.
47. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH. Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole. Chemistry of Materials. 2002;14(4):1610-3.
48. Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R. Stabilization of Individual Carbon Nanotubes in Aqueous Solutions. Nano Letters. 2002;2(1):25-8.
49. Riggs JE, Guo Z, Carroll DL, Sun Y-P. Strong Luminescence of Solubilized Carbon Nanotubes. Journal of the American Chemical Society. 2000;122(24):5879-80.
50. Hill DE, Lin Y, Rao AM, Allard LF, Sun Y-P. Functionalization of Carbon Nanotubes with Polystyrene. Macromolecules. 2002;35(25):9466-71.
51. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature. 1996;382(6586):54-6.
52. Ruoff RS, Qian D, Liu WK. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Comptes Rendus Physique. 2003;4(9):993-1008.
53. Javey A, Guo J, Wang Q, Lundstrom M, Dai H. Ballistic carbon nanotube field-effect transistors. Nature. 2003;424(6949):654-7.
54. Snow ES. Chemical Detection with a Single-Walled Carbon Nanotube Capacitor. Science. 2005;307(5717):1942-5.
55. Sahoo S, Husale S, Karna S, Nayak SK, Ajayan PM. Controlled Assembly of Ag Nanoparticles and Carbon Nanotube Hybrid Structures for Biosensing. Journal of the American Chemical Society. 2011;133(11):4005-9.
56. Wang X, Wang C, Cheng L, Lee S-T, Liu Z. Noble Metal Coated Single-Walled Carbon Nanotubes for Applications in Surface Enhanced Raman Scattering Imaging and Photothermal Therapy. Journal of the American Chemical Society. 2012;134(17):7414-22.
57. Qiu W, Li Q, Lei Z-K, Qin Q-H, Deng W-L, Kang Y-L. The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy. Carbon. 2013;53:161-8.
58. Xie X, Mai Y, Zhou X. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science and Engineering: R: Reports. 2005;49(4):89-112.
59. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon Nanotubes: Present and Future Commercial Applications. Science. 2013;339(6119):535-9.
60. Andrews R, Jacques D, Qian D, Rantell T. Multiwall Carbon Nanotubes: Synthesis and Application. Accounts of Chemical Research. 2002;35(12):1008-17.
61. Liu IC, Huang H-M, Chang C-Y, Tsai H-C, Hsu C-H, Tsiang RC-C. Preparing a Styrenic Polymer Composite Containing Well-Dispersed Carbon Nanotubes: Anionic Polymerization of a Nanotube-Boundp-Methylstyrene. Macromolecules. 2004;37(2):283-7.
62. Kong H, Gao C, Yan D. Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization. Journal of the American Chemical Society. 2004;126(2):412-3.
63. Zhao B, Hu H, Haddon RC. Synthesis and Properties of a Water-Soluble Single-Walled Carbon Nanotube–Poly(m-aminobenzene sulfonic acid) Graft Copolymer. Advanced Functional Materials. 2004;14(1):71-6.
64. Hsiao C-C, Lin TS, Cheng LY, Ma C-CM, Yang ACM. The Nanomechanical Properties of Polystyrene Thin Films Embedded with Surface-grafted Multiwalled Carbon Nanotubes. Macromolecules. 2005;38(11):4811-8.
65. Lin CW, Huang LC, Ma CCM, Yang ACM, Lin CJ, Lin LJ. Nanoplastic Flows of Glassy Polymer Chains Interacting with Multiwalled Carbon Nanotubes in Nanocomposites. Macromolecules. 2008;41(13):4978-88.
66. Lin C-W, Yang ACM. Nanoplastic Interactions of Surface-Grafted Single-Walled Carbon Nanotubes with Glassy Polymer Chains in Nanocomposites. Macromolecules. 2010;43(16):6811-7.
67. Karim MR, Yeum JH, Lee MS, Lim KT. Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the γ-radiolysis polymerization method. Materials Chemistry and Physics. 2008;112(3):779-82.
68. Robertson J. Realistic applications of CNTs. Materials Today. 2004;7(10):46-52.
69. Yu K, Lee JM, Kim J, Kim G, Kang H, Park B, et al. Semiconducting Polymers with Nanocrystallites Interconnected via Boron-Doped Carbon Nanotubes. Nano Letters. 2014;14(12):7100-6.
70. Mozaffari S, Li W, Thompson C, Ivanov S, Seifert S, Lee B, et al. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand–metal binding role in controlling the nucleation and growth kinetics. Nanoscale. 2017;9(36):13772-85.
71. Jing C, Rawson FJ, Zhou H, Shi X, Li W-H, Li D-W, et al. New Insights into Electrocatalysis Based on Plasmon Resonance for the Real-Time Monitoring of Catalytic Events on Single Gold Nanorods. Analytical Chemistry. 2014;86(11):5513-8.
72. Cates NC, Gysel R, Beiley Z, Miller CE, Toney MF, Heeney M, et al. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation. Nano Letters. 2009;9(12):4153-7.
آمار
تعداد مشاهده مقاله: 1,066
تعداد دریافت فایل اصل مقاله: 535