تعداد نشریات | 161 |
تعداد شمارهها | 6,476 |
تعداد مقالات | 70,001 |
تعداد مشاهده مقاله | 122,884,454 |
تعداد دریافت فایل اصل مقاله | 96,090,966 |
بررسی عملکرد روشهای ANN و SVR در ریزمقیاس نمایی بارش روزانه مناطق خشک | ||
تحقیقات آب و خاک ایران | ||
مقاله 7، دوره 49، شماره 4، مهر و آبان 1397، صفحه 781-793 اصل مقاله (930.01 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2018.237702.667720 | ||
نویسندگان | ||
عباس خاشعی سیوکی* 1؛ علی شهیدی2؛ محسن پوررضا بیلندی3؛ مهدی امیرابادیزاده3؛ احمد جعفرزاده4 | ||
1دانشیار گروه مهندسی آب دانشگاه بیرجند | ||
2دانشیار دانشگاه بیرجند | ||
3استادیار گروه علوم و مهندسی آب، دانشگاه بیرجند | ||
4دانشجوی دکتری مهندسی منابع آب، دانشکده کشاورزی، دانشگاه بیرجند | ||
چکیده | ||
مطالعات بررسی پیامدهای تغییر اقلیم بر منابع آب نیازمند تبدیل رفتار متغیرهای اقلیمی شبیهسازی شده توسط خروجی مدلهای گردش عمومی، از یک مقیاس بزرگ به یک مقیاس محلی و مناسب است. فرآیند ریزمقیاس نمایی به طور قابلتوجهی نتایج مربوط به شبیهسازی مدلهای گردش عمومی را بهبود میبخشد. با وجود اینکه مطالعات کمی در خصوص عملکرد روشهای ریزمقیاس نمایی در مناطق خشک وجود دارد، این پژوهش در نظر دارد تا کارایی روشهای آماری را به منظور ریزمقیاس نمایی بارش روزانه بررسی نماید. در این مطالعه به منظور بررسی عملکرد روش ANN و SVM در ریزمقیاس نمایی بارش روزانه مشاهداتی (1990-1960)، مقادیر 26 متغیر پیشبینی کننده از خروجی مدل گردش عمومی CanESM2 در گزارش پنجم، برای مدت مشابه استفاده شد. نخست فرآیند انتخاب بهترین متغیرهای پیشبینی کننده توسط آزمون رگرسیون گام به گام پیشرو انجام شد. به منظور بررسی توانمندی روشهای ریزمقیاس نمایی از شاخصهای ارزیابی R2، RMSE و NSEبهره گرفته شد. همچنین به منظور تحلیل بهتر از آزمونهای مقایسهای متعددی نظیر بررسی عدم قطعیت، آمارههای توصیفی، دورههای تر و خشک و بارندگی ماهانه استفاده شد. نتایج شاخصهای ارزیابی نشان داد که در حالت کلی عملکرد دو روش در تخمین بارش نسبتاً مناسب میباشد. مقدار شاخصهای ارزیابی R2، RMSE و NSE در بهترین حالت به ترتیب معادل 48/0، 5/1 میلیمتر در روز و 47/0 و متعلق به روش SVM با تابع کرنل Polynomial میباشد. مقایسه تغییرات بارندگی روزانه نشان داد عدم قطعیت تخمین زده شده در روش SVM به عدمقطعیت مقادیر مشاهداتی نزدیکتر میباشد. عملکرد روشها در تخمین آمارههای توصیفی نشان داد که روش SVM با تابع کرنل Polynomial از برتری قابلتوجهی نسبت به سایر روشها برخوردار میباشد. مقایسه میانگین بارشهای ماه به ماه در دوره آزمون نشان داد که در ماههای با بارش بالا، عملکرد SVM بهتر از ANN میباشد. همچنین هر دو روش بارش در فصل تابستان را بیش از مقدار مشاهداتی برآورد نمودهاند. نتایج تشخیص روزهای خشک نشان داد که عملکرد روشها به یکدیگر نزدیک میباشد. در این مقوله ANN حدود 96% روزهای خشک را به درستی تشخیص داد. اما در تشخیص روزهای تر عملکرد SVM در مقایسه با ANN بسیار بالاتر بود. بررسی توانمندی روشها در تخمین طول دورههای خشک نشان داد که عملکرد دو روش در تخمین دورههای بحرانی خشک بهتر از دورههای خشک با طول کم میباشد. همچنین نتایج مربوط به تخمین طول دورههای تر نشان داد که دقت روشها مناسب نمیباشد. | ||
کلیدواژهها | ||
تغییر اقلیم؛ دورههای خشک و تر؛ رگرسیون گام به گام؛ CanESM2 | ||
عنوان مقاله [English] | ||
Performance Assessment of ANN and SVR for downscaling of daily rainfall in dry regions | ||
نویسندگان [English] | ||
abbas khashei1؛ Ali Shahidi2؛ mohsen pourrezabilondi3؛ mehdi Amirabadizadeh3؛ ahmad jafarzadeh4 | ||
1university of birjand, Avini street, birjand city, soth khorasan province,iran | ||
2Associate professor, Department of Water Engineering, Faculty of Agriculture, University of Birjand, Iran | ||
3Assistant Professor, Dept. of Science and Water Engineering, University of Birjand | ||
4PhD Student of Water Resource Engineering, Dept. of Science and Water Engineering, University of Birjand | ||
چکیده [English] | ||
Studies of climate change impacts on water resources need to conversion of projection of climate variable pattern from coarser scales to a suitable scale. Downscaling processes improves projection of General Circulation Models (GCMs) significantly. In this study is assessed performance of Artificial Neural Network and Support Vector Regression. Observation rainfall was collected for 1961-1990 from Birjand synoptic station. Also value of 26 predictors from CanESM2 output in Assessment Report Five (AR5) was extracted. Predictor selection was performed by Stepwise regression. Model skill was evaluated using indices R2, RMSE and NSE. Also for better analysis using of various tests such as uncertainty assessment, reproduction of descriptive statistics, dry and wet spells and monthly rainfall. Results of assessment indices showed that estimation performances of both methods in daily rainfall are relatively suitable. Value of R2, RMSE and NSE are achieved 0.48, 1.5 mm and 0.47 for SVR with Polynomial kernel function in best case respectively. Results of skill model in estimation of descriptive statistics indicated that SVR with Polynomial kernel function outperforming others. Comparison of observed and downscaled monthly rainfall illustrates that SVR performs better than ANN in winter season. Also both methods have overestimation in summer months. Results of identification of dry days sowed that performance of both models is well and same. In this case ANN identified 96% dry days correctly. Results of identification of wet days showed that SVR outperforms ANN. Assessment of skill method for estimation of dry spells length indicated that both methods have more efficiently in long spells than short | ||
کلیدواژهها [English] | ||
climate change, Wet and Dry Spells, Stepwise regression, CanESM2 | ||
مراجع | ||
Camici, S., Palazzi, E., Pieri, A., Brocca, L., Moramarco, T. and Provenzale, A. 2015. Comparison between dynamical and stochastic downscaling methods in central Italy. In EGU General Assembly Conference Abstracts, 10270.. 10270. Campozano, L., Tenelanda, D., Sanchez, E., Samaniego, E., & Feyen, J. (2015). Comparison of statistical downscaling methods for monthly total precipitation: case study for the paute river basin in Southern Ecuador. Advances in Meteorology, 2016. Chadwick, R., Coppola, E., & Giorgi, F. (2011). An artificial neural network technique for downscaling GCM outputs to RCM spatial scale. Nonlinear Processes in Geophysics, 18(6). Chanda, K., & Maity, R. (2018). Global Climate Pattern Behind Hydrological Extremes in Central India. In Climate Change Impacts (pp. 71-89). Springer, Singapore. Chen, H., Xu, C. Y., & Guo, S. (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of hydrology, 434, 36-45. Çimen M. and Kisi, O. (2009). Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey. J Hydrol 378:253–262. Devak, M., Dhanya, C. T., & Gosain, A. K. (2015). Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall. Journal of Hydrology, 525, 286-301. Draper, N. R., Smith, H., & Pownell, E. (1966). Applied regression analysis (Vol. 3, pp. 217-220). New York: Wiley. Duan, K., & Mei, Y. (2014). A comparison study of three statistical downscaling methods and their model-averaging ensemble for precipitation downscaling in China. Theoretical and applied climatology, 116(3-4), 707-719. Hamidi, O., Poorolajal, J., Sadeghifar, M., Abbasi, H., Maryanaji, Z., Faridi, H. R., & Tapak, L. (2015). A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran. Theoretical and applied climatology, 119(3-4), 723-731. Harpham, C., & Wilby, R. L. (2005). Multi-site downscaling of heavy daily precipitation occurrence and amounts. Journal of Hydrology, 312(1), 235-255. Jafarzadeh, A., Khashei-Siuki, A., & Shahidi, A. (2017). Designing a multiobjective decision-making model to determine optimal crop pattern influenced by climate change phenomenon (case study: Birjand plain). Iranian Journal of Soil And Water Reaserch. 47(4). 849-859 (In Farsi). Kalra, A., & Ahmad, S. (2012). Estimating ANNual precipitation for the Colorado River Basin using oceanic‐atmospheric oscillations. Water Resources Research, 48(6). Liu, W., Fu, G., Liu, C., & Charles, S. P. (2013). A comparison of three multi-site statistical downscaling models for daily rainfall in the North China Plain. Theoretical and applied climatology, 111(3-4), 585-600. Lu, Y., & Qin, X. S. (2014). A coupled K‐nearest neighbour and Bayesian neural network model for daily rainfall downscaling. International Journal of Climatology, 34(11), 3221-3236. Mendes, D., & Marengo, J. A. (2010). Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios. Theoretical and Applied Climatology, 100(3-4), 413-421. Pearson, K. (1904). On the theory of contingency and its relation to association and normal correlation; On the general theory of skew correlation and non-linear regression. Cambridge University Press. Rezaei, E., Khashei- Siuki, A., & Shahidi, A. (2015). Design of Groundwater Level Monitoring Network, Using the Model of Least Squares Support Vector Machine (LS-SVM). Iranian Journal of Soil And Water Reaserch. 45(4). 389-396 (In Farsi). Richardson , C. 1981 Stochastic simulation of daily precipitation, temperature, and solar radiation. Water resources research, 17. Sachindra, D. A., Huang, F., Barton, A., & Perera, B. J. C. (2013). Least square support vector and multi‐linear regression for statistically downscaling general circulation model outputs to catchment streamflows. International Journal of Climatology, 33(5), 1087-1106. Salathe, E. P., Mote, P. W., & Wiley, M. W. (2007). Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States Pacific Northwest. International Journal of Climatology, 27(12), 1611-1621. Samadi, S., Wilson, C. A., & Moradkhani, H. (2013). Uncertainty analysis of statistical downscaling models using Hadley Centre Coupled Model. Theoretical and applied climatology, 114(3-4), 673-690. Schoof, J. T., & Pryor, S. C. (2001). Downscaling temperature and precipitation: A comparison of regression‐based methods and artificial neural networks. International Journal of climatology, 21(7), 773-790. Vu, M. T., Aribarg, T., Supratid, S., Raghavan, S. V., & Liong, S. Y. (2016). Statistical downscaling rainfall using artificial neural network: significantly wetter Bangkok?. Theoretical and applied climatology, 126(3-4), 453-467.
Wilby, R. L., & Wigley, T. M. L. (2000). Precipitation predictors for downscaling: observed and general circulation model relationships. International Journal of Climatology, 20(6), 641-661. Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145-157. Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P. (2004). Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs.” Yang, C., Wang, N., Wang, S., & Zhou, L. (2016). Performance comparison of three predictor selection methods for statistical downscaling of daily precipitation. Theoretical and Applied Climatology, 1-12. Yoon H, Jun S-C, Hyun Y, Bae G-O, Lee K-K (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396:128–138. | ||
آمار تعداد مشاهده مقاله: 985 تعداد دریافت فایل اصل مقاله: 735 |