تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,503 |
تعداد مشاهده مقاله | 124,120,021 |
تعداد دریافت فایل اصل مقاله | 97,226,734 |
In Silico Screening Studies on Methanesulfonamide Derivatives as Dual Hsp27 and Tubulin Inhibitors Using QSAR and Molecular Docking | ||
Journal of Sciences, Islamic Republic of Iran | ||
مقاله 3، دوره 29، شماره 3، آذر 2018، صفحه 221-240 اصل مقاله (1.15 M) | ||
نوع مقاله: Final File | ||
شناسه دیجیتال (DOI): 10.22059/jsciences.2018.67437 | ||
نویسندگان | ||
A. Mostoufi؛ H. Eucefifar؛ F. Beygi؛ M. Fereidoonnezhad* | ||
Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran | ||
چکیده | ||
The expression of heat shock protein 27 (Hsp27) as a chaperone protein, is increased in response to various stress stimuli such as anticancer chemotherapy. This phenomenon can lead to survive of the cells and causes drug resistance. In this study, a series of methanesulfonamide derivatives as dual Hsp27 and tubulin inhibitors in the treatment of cancer were applied to quantitative structure–activity relationship (QSAR) analysis. A collection of chemometrics methods such as MLR, FA-MLR, PCR, and GA-PLS was applied to make relations between structural characteristics and anti-proliferative activity of them against SKBR-3 breast cancer cell line. The best multiple linear regression equation was obtained from GA-PLS. Concerning this model, new potent lead compounds were designed based on new structural patterns using in silico-screening study. To obtain their binding mode, binding site and types of their interactions to both tubulin and HSP27, molecular docking studies were also conducted on these compounds. The validity of docking protocol was also explored. The results obtained from this docking study indicate that the important amino acids inside the active site cavity that are in charge of essential interactions with HSP27 are Arg140, Thr139, Phe138, Cys137, Arg136, Phe104, His103, Val101, and Asp100. And this important amino acids in essential interactions with tubulin are Asn258, Val238, Cys241, Asn350, Leu255, Met259, Val315, Thr353, Arg221, Thr179 and Ser178. | ||
کلیدواژهها | ||
QSAR, Molecular Docking؛ Heat shock protein 27 (Hsp27) inhibitors؛ Tubulin inhibitors | ||
مراجع | ||
1. Zhu Z., Xu X., Yu Y., Graham M., Prince ME., Carey TE., and Sun D. Silencing Heat Shock Protein 27 Decreases Metastatic Behavior of Human Head and Neck Squamous Cell Cancer Cells in Vitro. Mol. Pharm. 7: 1283-1290 (2010). 2. Oya-Ito T., Naito Y., Takagi T., Handa O., Matsui H., Yamada M., Shima K., and Yoshikawa T. Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer. Biochim. biophys. acta, Mol. basis dis. 1812:769-781 (2011). 3. Hsu HS., Lin JH., Huang WC., Hsu TW., Su K., Chiou SH., Tsai YT., and Hung SC. Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer. 117: 1516-1528 (2011). 4. Singh MK., Sharma B., and Tiwari PK. The small heat shock protein Hsp27: Present understanding and future prospects. J. Therm. Biol. 69:149-154 (2017). 5. Kimura H., Mikami D., Kamiyama K., Sugimoto H., Kasuno K., Takahashi N., Yoshida H., and Iwano M. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells. Biochem. Biophys. Res. Commun.454:320-327 (2014). 6. Temajo NO., Howard N. The virus-induced HSPs regulate the apoptosis of operatus APCs that results in autoimmunity, not in homeostasis. Autoimmun Rev.13: 1013-1019 (2014). 7. Jego G., Hazoumé A., Seigneuric R., and Garrido C. Targeting heat shock proteins in cancer. Cancer lett. 332:275-285 (2013). 8. Gonzalez-Mejia M., Voss O., Murnan E., and Doseff A. Apigenin-induced apoptosis of leukemia cells is mediated by a bimodal and differentially regulated residue-specific phosphorylation of heat-shock protein–27. Cell. Death. Dis. 1: e64 (2010). 9. Baylot V., Andrieu C., Katsogiannou M., Taieb D., Garcia S., Giusiano S., Acunzo J., Iovanna J., Gleave M., and Garrido C. OGX-427 inhibits tumor progression and enhances gemcitabine chemotherapy in pancreatic cancer. Cell. Death. Dis. 2: e221 (2011). 10. Goloudina AR., Demidov ON., and Garrido C. Inhibition of HSP70: A challenging anti-cancer strategy. Cancer Lett. 325:117-124 (2012). 11. Lianos GD., Alexiou GA., Mangano A., Mangano A., Rausei S., Boni L., Dionigi G., Roukos DH. The role of heat shock proteins in cancer. Cancer letters. 360:114-118 (2015). 12. Langer R., Ott K., Specht K., Becker K., Lordick F., Burian M., Herrmann K., Schrattenholz A., Cahill MA., and Schwaiger M. Protein expression profiling in esophageal adenocarcinoma patients indicates association of heat-shock protein 27 expression and chemotherapy response. Clin. Cancer Res. 14: 8279-8287 (2008). 13. Wu J., Liu T., Rios Z., Mei Q., Lin X., Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol. Sci. 38:226-256 (2017). 14. Heinrich J-C., Tuukkanen A., Schroeder M., Fahrig T., and Fahrig R. RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J. Cancer Res. Clin. Oncol. 137: 1349-1361 (2011). 15. Zhong B., Lama R., Kulman DG., Li B., and Su B. Lead optimization of dual tubulin and Hsp27 inhibitors. Eur. J. Med. Chem. 80:243-253 (2014). 16. Zhong B., Lama R., Smith KM., Xu Y., and Su B. Design and synthesis of a biotinylated probe of COX-2 inhibitor nimesulide analog JCC76. Bioorg. Med. Chem. Lett. 21: 5324-5327 (2011). 17. Yi X., Zhong B., Smith KM., Geldenhuys WJ., Feng Y., Pink JJ., Dowlati A., Xu Y., Zhou A., and Su B. Identification of a class of novel tubulin inhibitors. J. Med. Chem. 55: 3425-3435 (2012). 18. Zhong B., Chennamaneni S., Lama R., Yi X., Geldenhuys WJ., Pink JJ., Dowlati A., Xu Y., Zhou A., and Su B. Synthesis and anticancer mechanism investigation of dual Hsp27 and tubulin inhibitors. J. Med. Chem. 56: 5306-5320 (2013). 19. Fereidoonnezhad M., Faghih Z., Jokar E., Mojaddami A., Rezaei Z., and Khoshneviszadeh M. QSAR, Molecular Docking and protein ligand interaction fingerprint studies of N-phenyl dichloroacetamide derivatives as anticancer agents. Trends in Pharmaceutical Sciences. 2: 159-176 (2016). 20. Fereidoonnezhad M., Faghih Z., Mojaddami A., Sakhteman A., and Rezaei Z. A Comparative Docking Studies of Dichloroacetate Analogues on Four Isozymes of Pyruvate Dehydrogenase Kinase in Humans. Indian J. Pharm Edu. Res. 50: S32-S8 (2016). 21. Fereidoonnezhad M., Faghih Z., Mojaddami A., Tabaei S., and Rezaei Z. Novel Approach Synthesis, Molecular Docking and Cytotoxic Activity Evaluation of N-phenyl-2, 2-dichloroacetamide Derivatives as Anticancer Agents. J. Sci., Islamic Repub. Iran. 27: 39-49 (2016). 22. Frisch MJ., Trucks GW., Schlegel HB., Scuseria GE., Robb MA., Cheeseman JR., Scalmani G., Barone V., Mennucci B., Petersson GA., Nakatsuji H., Caricato M., Li X., Hratchian HP., Izmaylov AF., Bloino J., Zheng G., Sonnenberg JL., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. JA., Peralta JE., Ogliaro F., Bearpark MJ., Heyd J., Brothers EN., Kudin KN., Staroverov VN., Kobayashi R., Normand J., Raghavachari K., Rendell AP., Burant JC., Iyengar SS., Tomasi J., Cossi M., Rega N., Millam NJ., Klene M., Knox JE., Cross JB., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann RE., Yazyev O., Austin AJ., Cammi R., Pomelli C., Ochterski JW., Martin RL., Morokuma K., Zakrzewski VG., Voth GA., Salvador P., Dannenberg JJ., Dapprich S., Daniels AD., Farkas Ö., Foresman JB., Ortiz JV., Cioslowski J., and Fox DJ., Gaussian 09. 2009, Gaussian, Inc.: Wallingford, CT, USA. 23. A. Mauri VC., M. Pavan., R. Todeschini: D,. RAGON Software: An Easy Approach to Molecular Descriptor Calculations. MATCH Commun. Math. Comput. Chem. 56: 237-248 (2006). 24. Thanikaivelan P., Subramanian V., Raghava Rao J., and Unni Nair B. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem. Phys. Lett. 323: 59-70 (2000). 25. Zare S., Fereidoonnezhad M., Afshar D., and Ramezani Z. A comparative QSAR analysis and molecular docking studies of phenyl piperidine derivatives as potent dual NK 1 R antagonists/serotonin transporter (SERT) inhibitors. Comp. Biol. Chem. 67: 22-37 (2017). 26. Fereidoonnezhad M., Faghih Z., Mojaddami A., Rezaei Z., and Sakhteman A. A comparative QSAR analysis, molecular docking and PLIF studies of some N-arylphenyl-2,2-dichloroacetamide analogues as anticancer agents. Iran J. Pharm. Res. 16: 981-998 (2017). 27. Adhikari N., Maiti MK., Jha T. Predictive comparative QSAR modelling of (phenylpiperazinyl-alkyl) oxindoles as selective 5-HT 1A antagonists by stepwise regression, PCRA, FA-MLR and PLS techniques. Eur. J. Med. Chem. 45:1119-1127 (2010). 28. Bhattacharya P., and Roy K. QSAR of adenosine A 3 receptor antagonist 1, 2, 4-triazolo [4, 3-a] quinoxalin-1-one derivatives using chemometric tools. Bioorg. Med. Chem. Lett. 15: 3737-3743 (2005). 29. Asadollahi T., Dadfarnia S., Shabani AMH., Ghasemi JB., and Sarkhosh M. QSAR Models for CXCR2 Receptor Antagonists Based on the Genetic Algorithm for Data Preprocessing Prior to Application of the PLS Linear Regression Method and Design of the New Compounds Using In Silico Virtual Screening. Molecules. 16: 1928-1955 (2011). 30. Khoshneviszadeh M., Edraki N, Miri R., Foroumadi A., and Hemmateenejad B. QSAR Study of 4-Aryl-4H-Chromenes as a New Series of Apoptosis Inducers Using Different Chemometric Tools. Chem. Biol. Drug. Des. 79: 442-458 (2012). 31. Addinsoft S. XLstat 2012: Leading data analysis and statistical solution for microsoft excel. Addinsoft SRL. (2012) 32. Olah M., Bologa C., and Oprea TI. An automated PLS search for biologically relevant QSAR descriptors. J. Comput. Aided. Mol. Des. 18: 437-449 (2004). 33. Galindo‐Prieto B., Eriksson L., and Trygg J. Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). J. Chemometrics. 28:623-632 (2014). 34. Roy K., Kar S., and Das RN., Chapter 7 - Validation of QSAR Models, in Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment., Academic Press: Boston. p. 231-89(2015). 35. Weaver S., and Gleeson MP. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model. 26: 1315-1326 (2008). 36. Mojaddami A., Sakhteman A., Fereidoonnezhad M., Faghih Z., Najdian A., Khabnadideh S., Sadeghpour H., and Rezaei Z. Binding mode of triazole derivatives as aromatase inhibitors based on docking, protein ligand interaction fingerprinting, and molecular dynamics simulation studies. Res. Pharm. Sci. 12: 21-30 (2017). 37. Helgren TR., Hagen TJ. Demonstration of AutoDock as an Educational Tool for Drug Discovery. J. Chem. Educ. 94: 345-349 (2017). 38. Fereidoonnezhad M., Kaboudin B., Mirzaee T., Babadi Aghakhanpour R., Golbon Haghighi M., Faghih Z., Faghih Z., Ahmadipour Z., Notash B., and Shahsavari HR. Cyclometalated Platinum (II) Complexes Bearing Bidentate O, O′-Di (alkyl) dithiophosphate Ligands: Photoluminescence and Cytotoxic Properties. Organometallics. 36:1707-1717 (2017). 39. Morris GM., Goodsell DS., Halliday RS., Huey R., Hart WE., Belew RK., and Olson AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19: 1639-1662 (1998). 40. Hamedi A., Khoshnoud MJ., Tanideh N., Abbasi F., Fereidoonnezhad M., and Mehrabani D. Reproductive toxicity of Cassia absus seeds in female rats: possible progesteronic properties of chaksine and b-sitosterol. Pharm. Chem. J. 49: 268-274 (2015). 41. Faghih Z., Fereidoonnezhad M., Tabaei SMH., Rezaei Z., and Zolghadr AR. The binding of small carbazole derivative (P7C3) to protofibrils of the Alzheimer’s disease and β-secretase: Molecular dynamics simulation studies. Chem. Phys. 459: 31-39 (2015). 42. Humphrey W., Dalke A., and Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 14: 33-8, 27-8 (1996). 43. DeLano WL. PyMOL. DeLano Scientific, San Carlos, CA. 700: (2002) 44. Triballeau N., Acher F., Brabet I., Pin JP., and Bertrand HO. Virtual screening workflow development guided by the "receiver operating characteristic" curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J. Med. Chem. 48: 2534-2547 (2005). 45. Rezaei Z., Fereidoonnezhad M., Faghih Z., Sadeghpur H., Mojaddami A., and Sakhteman A. Comparison of docking procedures and its efficiency for Betasecretase, Aromatase and Pyruvate dehydrogenase kinase inhibitors. Trends. Pharm. Sci. 3: 31-42 (2017). 46. Gaulton A., Bellis LJ., Bento AP., Chambers J., Davies M., Hersey A., Light Y., McGlinchey S., Michalovich D., Al-Lazikani B., and Overington JP. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40: D1100-1107 (2012). 47. Wassermann AM., and Bajorath J., BindingDB and ChEMBL: online compound databases for drug discovery. Expert Opin Drug Discov. 6: 683-687 (2011). 48. Willighagen EL., Waagmeester A., Spjuth O., Ansell P., Williams AJ., Tkachenko V., Hastings J., Chen B., and Wild DJ. The ChEMBL database as linked open data. J. Cheminform. 5: 23 (2013). 49. O'Boyle NM., Banck M., James CA., Morley C., Vandermeersch T., and Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 3: 33 (2011). 50. Li H., Zhang H., Zheng M., Luo J., Kang L., Liu X., Wang X., and Jiang H. An effective docking strategy for virtual screening based on multi-objective optimization algorithm. BMC bioinformatics. 10: 58 (2009). | ||
آمار تعداد مشاهده مقاله: 374 تعداد دریافت فایل اصل مقاله: 394 |