تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,986 |
تعداد دریافت فایل اصل مقاله | 97,221,803 |
A Multi-Metric Index for Hydrocarbons Source Apportionment | ||
Pollution | ||
مقاله 17، دوره 5، شماره 2، تیر 2019، صفحه 419-427 اصل مقاله (1013.52 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2018.259533.457 | ||
نویسندگان | ||
M. Mahmudi؛ S. H. Hashemi* ؛ A. Salemi | ||
Environmental Sciences Research Institute, Shahid Beheshti University, P.O.Box 1983963113,Tehran,Iran | ||
چکیده | ||
Several studies have been conducted to develop more accurate and precise indices for hydrocarbons source apportionment. The present study, however, develops a new multi-metric index for hydrocarbons source apportionment. It measures Poly Aromatic Hydrocarbons (PAHs) concentration at six stations with well known petrogenic origin, calculating Phe/An, Flu/Py, Chr/BaA, BaA/Chr, An/(An+Ph), Flu/(Flu+Pyr), and IP/(IP+Bghi) indices. All the indices could correctly determine the source of hydrocarbons, except for IP/(IP+Bghi). Subsequently, it uses principle component analysis method to create a combined multi-metric index, based on PAHs, the concentration of which also contributes to the evaluation of new index performance in stations with known origins. Results show that the new multi-metric index can determine the source of hydrocarbons with greater certainty. Then, using this index, the potential source of contamination in the area has been divided into six sections, namely HPY, MPY, LPY, MPE, HPE, and LPE, which indicate origin of high, moderate, and low risk of petrogenic contamination, as well as source of pyrolytic contamination with high, moderate, and low probabilities. | ||
کلیدواژهها | ||
Multi-Metric Index؛ Source Apportionment؛ Poly Aromatic Hydrocarbon؛ Petrogenic and Pyrolitic Source | ||
مراجع | ||
Alberty, R. A. and Reif, A. K. (1988). Standard chemical thermodynamic properties of polycyclic aromatic hydrocarbons and their isomer groups I. Benzene series J. Phys. Chem. Ref. Data., 17(1), 241-253.
Baumard, P., Budzinski, H. Michon, Q. Garrigues, P. Burgeot, T. and Bellocq, J. (1998). Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine Coastal Mar. Sci., 47(1), 77-90.
Bayat, J., Hashemi, S. H. Khoshbakht, K. and Deihimfard, R. (2016). Fingerprinting aliphatic hydrocarbon pollutants over agricultural lands surrounding Tehran oil refinery. Environ. Monit. Assess., 188(11), 612.
Budzinski, H., Jones, I. Bellocq, J. Pierard, C. and Garrigues, P. H. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem., 58(1), 85-97.
Boitsov, S., Jensen, H. K. B. and Klungsoyr, J. (2009). Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea. Mar. Environ. Res., 68(5), 236-245.
Boonyatumanond, R., Wattayakorn, G. Togo, A. and Takada, H. (2006). Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Mar. Pollut. Bull., 52(8), 942-956.
Clesceri, L., Greenberg, A. and Eaton, A. (1989). Standard methods for the examination of water and wastewater.
Colombo, J. C., Pelletier, E. Brochu, C. Khalil, M. and Catoggio, J. A. (1989). Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indices. Case study: Rio de la Plata estuary, Argentina. Environ. Sci. Technol., 23(7), 888-894.
Colombo, J. C., Barreda, A. Bilos, C. Cappelletti, N. Migoya, M. C. and Skorupka, C. (2005). Oil spill in the Rio de la Plata estuary, Argentina: 2-hydrocarbon disappearance rates in sediments and soils. Environ Pollut., 134(2), 267-276.
Commendatore, M. G., Esteves, J. L. and Colombo, J. C. (2000). Hydrocarbons in coastal sediments of Patagonia, Argentina: levels and probable sources. Mar. Pollut. Bull., 40(11), 989-998.
Cuypers, C., Pancras, T. Grotenhuis, T. and Rulkens, W. (2002). The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere., 46(8), 1235-1245.
Garrigues, P., Budzinski, H. Manitz, M. P. and Wise, S. A. (1995). Pyrolytic and petrogenic inputs in recent sediments: a definitive signature through phenanthrene and chrysene compound distribution. Polycyclic Aromat. Compd., 7(4), 275-284.
Gawad, E. A., Lotfy, M. M. Saoodani, F. N. and Katheery, B. E. L. (2008). Assessment of the oil pollution extent in the offshore sediments, Abu Dhabi, UAE. Aust. J. Basic Appl. Sci., 2(3), 617-631.
Gschwend, P. M. and Hites, R. A. (1981). Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim. Cosmochim. Acta., 45(12), 2359-2367.
Hofmann, T., Pies, C. and Yang, Y. (2007). Elevated polycyclic aromatic hydrocarbons in a river floodplain soil due to coal mining activities. Water Sci. Technol. Water Supply., 7(3), 69-74.
Hu, C., Delgado, J. A. Zhang, X. and Ma, L. (2005). Assessment of groundwater use by wheat (Triticum aestivum L.) in the Luancheng Xian region and potential implications for water conservation in the northwestern North China Plain. J. Soil Water Conserv., 60(2), 80-88.
Masclet, P., Bresson, M. A. and Mouvier, G. (1987). Polycyclic aromatic hydrocarbons emitted by power stations, and influence of combustion conditions. Fuel, 66(4), 556-562.
Moopam, R. (1999). Manual of oceanographic observations and pollutant analysis methods. ROPME. Kuwait, 1, 20.
Medeiros, P. M., Bícego, M. C. Castelao, R. M. Del Rosso, C. Fillmann, G. and Zamboni, A. J. (2005). Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon Estuary, Brazil. Environ. Int.,31(1), 77-87.
Nelson, P. F., Smith, I. W. Tyler, R. J. and Mackie, J. C. (1988). Pyrolysis of coal at high temperatures. Energy Fuels, 2(4), 391-400.
Pies, C., Hoffmann, B. Petrowsky, J. Yang, Y. Ternes, T. A. and Hofmann, T. (2008). Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere, 72(10), 1594-1601.
Saber, D., Mauro, D. and Sirivedhin, T. (2006). Environmental forensics investigation in sediments near a former manufactured gas plant site. Environ. Forensics., 7(1), 65-75.
Stout, S. A. and Wasielewski, T. N. (2004). Historical and chemical assessment of the sources of PAHs in soils at a former coal-burning power plant, New Haven, Connecticut. Environ. Forensics, 5(4), 195-211.
Stout, S. A., Emsbo-Mattingly, S. Uhler, A. D. and McCarthy, K. J. (2002). Particulate coal in soils and sediments–recognition and potential influences on hydrocarbon fingerprinting and concentration. Contaminated Soil, Sediment, and Water, June, 12-15.
Soclo, H. H., Garrigues, P. H. and Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar. Pollut. Bull.,40(5), 387-396.
Tolosa, I., de Mora, S. Sheikholeslami, M. R. Villeneuve, J. P. Bartocci, J. and Cattini, C. (2004). Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Mar. Pollut. Bull., 48(1), 44-60.
Tolosa, I., Mesa-Albernas, M. and Alonso-Hernandez, C. M. (2009). Inputs and sources of hydrocarbons in sediments from Cienfuegos bay, Cuba. Mar. Pollut. Bull., 58(11), 1624-1634.
Wu, Y. L., Wang, X. H. Li, Y. Y. and Hong, H. S. (2011). Occurrence of polycyclic aromatic hydrocarbons (PAHs) in seawater from the Western Taiwan Strait, China Mar. Pollut. Bull., 63(5), 459-463.
Yang, G. P. (2000). Polycyclic aromatic hydrocarbons in the sediments of the South China Sea. Environ Pollut., 108(2), 163-171.
Yunker, M. B., Macdonald, R. W. Vingarzan, R. Mitchell, R. H. Goyette, D. and Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem., 33(4), 489-515.
Zaghden, H., Kallel, M. Elleuch, B. Oudot, J. and Saliot, A. (2007). Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Mar. Chem., 105(1), 70-89. | ||
آمار تعداد مشاهده مقاله: 537 تعداد دریافت فایل اصل مقاله: 407 |