تعداد نشریات | 161 |
تعداد شمارهها | 6,476 |
تعداد مقالات | 70,006 |
تعداد مشاهده مقاله | 122,897,352 |
تعداد دریافت فایل اصل مقاله | 96,105,672 |
کاربرد ریزوباکترهای پروبیوتیک جهت کنترل زیستی ویروس موزاییک توتون در میزبان گوجهفرنگی | |||||
کنترل بیولوژیک آفات و بیماری های گیاهی | |||||
مقاله 10، دوره 7، شماره 2، آذر 1397، صفحه 117-127 اصل مقاله (885.14 K) | |||||
نوع مقاله: مقاله پژوهشی | |||||
شناسه دیجیتال (DOI): 10.22059/jbioc.2019.274441.258 | |||||
نویسندگان | |||||
میلاد آئینی* 1؛ محمد حامد قدوم پاریزی پور2؛ پرنیان پولادی3 | |||||
1گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران | |||||
2استادیار گروه گیاهپزشکی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران. | |||||
3دانش آموخته مقطع کارشناسی ارشد بیماری شناسی ، گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران. | |||||
چکیده | |||||
ویروس موزاییک توتون (TMV) ازجمله ویروسهایی است که تولید محصول گوجهفرنگی را در مزرعه و گلخانه، بهشدت کاهش میدهد. مطالعه و تحقیق حاضر جهت تعیین ترکیب مناسبی از رایزوباکترهای پروبیوتیک بهمنظور کاهش شدت بیماری ناشی از ویروس موزاییک توتون در میزبان گوجهفرنگی در شرایط گلخانه صورت گرفت. از سه جدایهی باکتری شامل Pseudomonas putida، Pseudomonas fluorescens و Bacillus subtilis پس از اثبات خاصیت عدم آنتاگونیستی با یکدیگر، استفاده شد. غلظت 108 واحد تشکیلدهنده کلنی بر میلیلیتر از سوسپانسیون باکتریها به فراریشهی گیاهچههای گوجهفرنگی اضافه شد. گیاهچهها بهطور مکانیکی با TMV مایهزنی و به مدت شش هفته جهت ظهور علائم نگهداری شدند. دادههای شدت علائم بیماری، غلظت ویروس در گیاهان آلوده و شاخصهای رشدی گیاهان مایهزنی شده ثبت و مورد تجزیهوتحلیل آماری انجام گرفت. نتایج نشان داد که در تیمار ترکیب سه باکتری P. putida، P. fluorescens و B. subtilis شدت علائم و تجمع TMV در گیاهان گوجهفرنگی در مقایسه با سایر تیمارها، کاهش معنیداری دارد. در مقابل، شاخصهای رشدی گیاه با کاربرد این ترکیب باکتریایی، افزایش معنی-داری را در مقایسه با سایرین نشان داد. این نتایج نشان داد که ترکیبی از ریزوباکترهای پروبیوتیک دارای اثر همافزایی بوده و میتواند موجب کاهش غلظت ویروس و افزایش مؤلفههای رشدی گیاه میزبان گردد. | |||||
کلیدواژهها | |||||
الایزای غیرمستقیم؛ مایهزنی؛ چگالی نوری؛ شدت بیماری | |||||
عنوان مقاله [English] | |||||
Management of tobacco mosaic virus by some probiotic bacteria in tomato plant | |||||
نویسندگان [English] | |||||
Milad Aeini1؛ Mohamad Hamed Ghodoum Parizipour2؛ Parnian Pooladi3 | |||||
1Plant Protection Department, Faculty of Agriculture, Shahid Chamran university of Ahvaz, Ahvaz, Iran | |||||
2Assistant Professor, Department of Plant protection, Agricultural Sciences and natural Resources University of Khuzestan, Mollasani. Iran | |||||
3Master of Science in Plant Pathology, Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | |||||
چکیده [English] | |||||
Tobacco mosaic virus (TMV) is considered as a devastating virus which significantly reduces the tomato yield. This investigation aimed to find an efficient combination of plant probiotic bacteria to control TMV in tomato. Suspensions of Pseudomonas fluorescens, Pseudomonas putida, and Bacillus subtilis were prepared at the concentration of 108 colony forming unit per milliliter. Tomato seedlings, were treated with probiotic bacteria by adding 100 milliliters of suspension. Afterward, seedlings were inoculated with TMV and were inspected for six weeks. Subsequently, an indirect- ELISA test using TMV specific polyclonal antibody was used to compare the relative virus titer in the plants of each treatment. The experiment was conducted in a completely randomized design with nine treatments and six replicates, respectively. Results showed that the OD in the mixed bacterial treatment was lower (0.08) in comparison to the positive control (0.87) (p<0.05). Application of B. subtilis resulted in the higher OD (0.45) compared to the other treatments (p<0.05). Additionally, plant growth indicators including fresh and dry weight of root and above ground tissues of tomato as well as height of tomato plants and chlorophyl content were recorded. Application of plant probiotic bacteria significantly increased these indices in TMV-inoculated tomato plants compared to the control. The overall results showed that the mixture of three probiotic rhizobacteria had a synergistic effect, so that showed higher decrease in disease severity in comparison to the control. | |||||
کلیدواژهها [English] | |||||
Indirect ELISA, inoculation, Optical density, Disease severity | |||||
مراجع | |||||
Ab Rahman SFS, Singh E, Pieterse CM, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Science 267(1): 102-111.
Adams MJ, Adkins S, Bragard C, Gilmer D, Li D, MacFarlane SA, Consortium IR (2017) ICTV virus taxonomy profile: Virgaviridae. The Journal of General Virology 98(8): 1999.
Agrios GN (2005) Introduction to plant pathology. Elsevier Academic Press Publication.
Balachandran S, Hurry V M, Kelley SE, Osmond CB, Robinson SA, Rohozinski J, Sims DA (1997) Concepts of plant biotic stress. Some insights into the stress physiology of virus‐infected plants, from the perspective of photosynthesis. Physiologia Plantarum 100(2): 203-213.
Alishiri A, Rakhshandehroo F, Zamanizadeh H, Palukaitis P (2013) Prevalence of Tobacco mosaic virus in Iran and evolutionary analyses of the coat protein gene. Plant Pathology Journal 29(3): 260–273.
Balachandran S, Osmond CB, Daley PF (1994) Diagnosis of the earliest strain-specific interactions between tobacco mosaic virus and chloroplasts of tobacco leaves in vivo by means of chlorophyll fluorescence imaging. Plant Physiology 104(3): 1059-1065.
Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of ExperimentalBotany 58(15-16): 4019-4026.
Buttery BR, Buzzell RI (1977) The relationship between chlorophyll content and rate of photosynthesis in soybeans. Canadian Journal of Plant Science 57(1): 1-5.
Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34(3): 475-483.
Croft H, Chen JM, Luo X, Bartlett P, Chen B, Staebler RM (2017) Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology 23(9): 3513-3524.
Daley PF (1995) Chlorophyll fluorescence analysis and imaging in plant stress and disease. Canadian Journal of Plant Pathology 17(2): 167-173.
del Carmen Orozco-Mosqueda M, del Carmen Rocha-Granados M, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological Research 208(1): 25-31.
Guo DP, Guo YP, Zhao JP, Liu H, Peng Y, Wang QM, Rao GZ (2005) Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after Turnip mosaic virus infection. Plant Science 168(1): 57-63.
Guo P, Li M (1996) Studies on photosynthetic characteristics in rice hybrid progenies and their parents I. chlorophyll content, chlorophyll-protein complex and chlorophyll fluorescence kinetics. Journal of Tropical and Subtropical Botany 4(4): 60-65.
Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biological Control 51(1): 16-25.
Hull R (1989) The movement of viruses in plants. Annual Review of Phytopathology 27(1): 213-240.
Hull R (2014) Matthews' Plant Virology. 5th ed. Academic Press, USA.
Janisiewicz WJ (1988) Biocontrol of postharvest diseases of apples with antagonist mixtures. Phytopathology 78(2): 194-198.
Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control 24(3): 285-291.
Kandan A, Ramiah M, Vasanthi VJ, Radjacommare R, Nandakumar R, Ramanathan A, Samiyappan R (2005) Use of Pseudomonas fluorescens-based formulations for management of Tomato spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontrol Science and Technology 15(6): 553-569.
Kavino M, Harish S, Kumar N, Saravanakumar D, Damodaran T, Soorianathasundaram K, Samiyappan R (2007) Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against Bunchy top virus. Soil Biology and Biochemistry 39(5): 1087-1098.
Koch E, Becker JO, Berg G, Hauschild R, Jehle J, Kohl J, Smalla K (2018) Biocontrol of plant diseases is not an unsafe technology. Journal of Plant Diseases and Protection 125(2): 121-125.
Kura-Hotta M, Satoh K, Katoh S (1987) Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant and Cell Physiology 28(7): 1321-1329.
Letschert B, Adam G, Lesemann DE, Willingmann P, Heinze C (2002) Detection and differentiation of serologically cross-reacting tobamoviruses of economical importance by RT-PCR and RT-PCR-RFLP. Journal of Virological Methods 106(1): 1-10.
Lenin G, Jayanthi M (2012) Efficiency of plant growth promoting rhizobacteria (PGPR) on enhancement of growth, yield and nutrient content of Catharanthus roseus. International Journal of Research in Pure and Applied Microbiology 2: 37–42.
Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Davis CE (2015) Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development 35(1): 1-25.
Mishra S, Jagadeesh KS, Krishnaraj PU, Prem S (2014) Biocontrol of Tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions. Australian Journal of Crop Science 8(3): 347.
Montasser MS, Dashti NH, Ali NY, Bhardwaj R, Al-Hamar B (2006) Occurrence of three strains of Cucumber mosaic virus affecting tomato in Kuwait. Plant Pathology Journal 22(1): 51–62.
Mujdeci M, Senol H, Cakmakci T, Celikok P (2011) The effects of different soil water matric suctions on stomatal resistance. Journal of Food, Agriculture and Environment 9(1): 1027-1029.
Murchie EH, Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant, Cell and Environment 20(4): 438-448.
Murphy JF, Reddy MS, Ryu CM, Kloepper JW, Li R (2003) Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93(1): 1301–1307.
Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against Tomato mottle virus. Plant Disease 84(7): 779-784.
Peng S, Sanico AL, Garcia FV, Laza RC, Visperas RM, Descalsota JP, Cassman KG (1999) Effect of leaf phosphorus and potassium concentration on chlorophyll meter reading in rice. Plant production science 2(4): 227-231.
Pierson EA, Weller DM (1994) To suppress take-all and improve the growth of wheat. Phytopathology 84(1): 940-947.
Radwan DEM, Fayez KA, Mahmoud SY, Hamad A, Lu G (2007) Physiological and metabolic changes of Cucurbita pepo leaves in response to Zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiology andBiochemistry 45(6-7): 480-489.
Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88(11): 1158-1164.
Roberts PL, Wood KR (1982) Effects of a severe (P6) and a mild (W) strain of Cucumber mosaic virus on tobacco leaf chlorophyll, starch and cell ultrastructure. Physiological Plant Pathology 21(1): 31-37.
Saini P, Khanna V, Gangwar M (2015) Mechanisms of plant growth promotion by rhizobacteria. Journal of Pure and Applied Microbiology 9(1): 1163-1177.
Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba JI, Sueda K, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLOS pathogens 7(5): e1002021.
Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote sensing of environment 81(2-3): 337-354.
Singh M, Singh D, Gupta A, Pandey KD, Singh PK, Kumar A (2019) Plant Growth Promoting Rhizobacteria: Application in biofertilizers and biocontrol of phytopathogens. In PGPR Amelioration in Sustainable Agriculture (pp. 41-66). Woodhead Publishing.
Srinivasan K, Surendiran G, Maathivanan N (2005) Pathological and molecular biological investigations on sunflower necrosis virus (SNV) and ISR mediated biological control of SNV by PGPR strains. In Asian Conference on Emerging Trends in Plant-Microbe Interaction8(10).
Vinayarani G, Madhusudhan KN, Deepak SA, Niranjana SR, Prakash HS (2011) Detection of mixed infection of tobamoviruses in tomato and bell pepper by using RT-PCR and duplex RT-PCR. International Journal of Plant Pathology 2(2): 89-95.
Yuan Y (2011) Multiple imputation using SAS software. Journal of Statistical Software 45(6): 1-25.
Zehnder GW, Yao C, Murphy JF, Sikora ER, Kloepper JW (2000) Induction of resistance in tomato against Cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biocontrol 45(1): 127-137. | |||||
آمار تعداد مشاهده مقاله: 740 تعداد دریافت فایل اصل مقاله: 688 |