
تعداد نشریات | 162 |
تعداد شمارهها | 6,621 |
تعداد مقالات | 71,530 |
تعداد مشاهده مقاله | 126,856,914 |
تعداد دریافت فایل اصل مقاله | 99,900,847 |
Designing a new bi-objective mathematical model for dynamic cell configuration based on grouping efficacy by considering operator assignments | ||
Advances in Industrial Engineering | ||
مقاله 12، دوره 52، شماره 3، دی 2018، صفحه 459-469 اصل مقاله (1005.15 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jieng.2019.211509.1166 | ||
نویسندگان | ||
Mojtaba Kermanshahi؛ Nikbakhsh Javadian* ؛ Mohammad Mahdi Paydar | ||
چکیده | ||
In the present competitive world, the necessity of minimizing costs and production time and increasing the productivity in manufacturing systems are more and more felt. Because when production costs are reduced, the final price of product is reduced too and when the production time is reduced, afterward the response time to customers order is reduced too. This paper presents a bi-objective mathematical model of multi period cell formation problem base on grouping efficacy in dynamic environment with the flexibility in operator assignment. The advantages of the proposed model are as follows: considering multi period planning horizon, dynamic system reconfiguration, duplicate machine, machine capacity, available time of operators and operator assignment. The aims of the proposed model are to maximize the total value of grouping efficacy (TVGE) and minimize the total costs (TC) include purchasing new machines cost, machine overhead cost, machine processing and reconfiguration costs, hiring, firing and salary costs. Computational results are presented by solving some numerical examples with improved e-constraint method to validate and verify the proposed model. | ||
کلیدواژهها | ||
Dynamic cellular manufacturing systems؛ Grouping efficacy؛ Cell configuration؛ Operator assignment | ||
عنوان مقاله [English] | ||
ارائۀ یک مدل ریاضی جدید دوهدفه برای پیکربندی سلول بهصورت پویا براساس بهرهوری گروهی با درنظرگرفتن تخصیص اپراتور | ||
نویسندگان [English] | ||
مجتبی کرمانشاهی؛ نیکبخش جوادیان؛ محمدمهدی پایدار | ||
چکیده [English] | ||
در جهان رقابتی حاضر، لزوم کمینهسازی هزینهها و زمان تولید و افزایش میزان بهرهوری در سیستمهای تولیدی، بیشازپیش احساس میشود؛ زیرا با کاهش هزینههای ناشی از تولید، قیمت تمامشده کالا نیز کاهش مییابد و اگر زمان تولید کاهش یابد متعاقب آن زمان پاسخگویی به سفارش مشتری هم کاهش مییابد. در این مقاله، مدل ریاضی دوهدفه برای مسئلة آرایش سلولی بر پایة افزایش میزان بهرهوری گروهی در محیط پویا با در نظر گرفتن تخصیص اپراتور ارائه شده است. ازجمله مزیتهای این مدل عبارت است از: در نظر گرفتن افق برنامهریزی چند دورهای، پیکربندی مجدد سیستم، ظرفیت ماشین، تعداد اپراتور در دسترس و انعطافپذیری در تخصیص اپراتور است. اهداف مدل پیشنهادی شامل افزایش میزان بهرهوری گروهی در کل دورهها و کاهش هزینههای سیستم شامل خرید ماشین، تعمیرات و نگهداری، هزینة متغیر ماشین، هزینة راهاندازی و از دور خارجکردن ماشینها و همینطور هزینة حقوق، استخدام و اخراج است. این مدل به روش اپسیلون- محدودیت اصلاحشده تقویتشده حل و درنهایت نتایج بهدستآمده بررسی شده است. | ||
کلیدواژهها [English] | ||
آرایش سلولها, بهرهوری گروهی, تخصیص اپراتور, سیستمهای تولید سلولی پویا, فناوری گروهی | ||
مراجع | ||
Mitranov, S. P. (1966). The Scientific Principles of Group Technology. National Lending Library For Science and Technology (Great Britain) 2. Burbidge, J. L. (1971). “Production Flow Analysis”, Production Engineer, Vol. 4, No. 50, PP. 139-152. 3. Heragu, S. S. (1994). “Group Technology and Cellular Manufacturing”, Systems, Man and Cybernetics, IEEE Transactions on, Vol. 24, No. 2, PP. 203-215. 4. Wemmerlöv, U., and Hyer, N. L. (1989). “Cellular Manufacturing in the US Industry: A Survey of Users”, The International Journal of Production Research, Vol. 27, No. 9, PP. 1511-1530. 5. Mahdavi, I. et al. (2007). “Designing a New Mathematical Model for Cellular Manufacturing System Based on Cell Utilization”, Applied Mathematics and Computation, Vol. 190, No. 1, PP. 662-670. 6. Mahdavi, I., and Mahadevan, B. (2008). “CLASS: An Algorithm for Cellular Manufacturing System and Layout Design Using Sequence Data”, Robotics and Computer-Integrated Manufacturing, Vol. 24, No. 3, PP. 488-497. 7. Tavakkoli-Moghaddam, R., Safaei, N., and Sassani, F. (2008). “A New Solution for a Dynamic Cell Formation Problem wth Alternative Routing and Machine Costs Using Simulated Annealing”, Journal of the Operational Research Society, Vol. 59, No. 4, PP. 443-454. 8. Mahdavi, I. et al. (2009). “Genetic Algorithm Approach for Solving a Cell Formation Problem in Cellular Manufacturing”, Expert Systems with Applications, Vol. 36, No. 3, PP. 6598-6604. 9. Paydar, M. M., and Saidi-Mehrabad, M. (2013). “A Hybrid Genetic-Variable Neighborhood Search Algorithm for the Cell Formation Problem Based on Grouping Efficacy”, Computers and Operations Research, Vol. 40, No. 4, PP. 980-990. 10. Aryanezhad, M. B., Deljoo, V., and Mirzapour Al-E-Hashem, S. M. J. (2009). “Dynamic Cell Formation and the Worker Assignment Problem: A New Model”, The International Journal of Advanced Manufacturing Technology, Vol. 41, No. 3-4, PP. 329-342. 11. Bajestani, M. A. et al. (2009). “A Multi-Objective Scatter Search for A Dynamic Cell Formation Problem”, Computers and Operations Research, Vol. 36, No. 3, PP. 777-794. 12. Bagheri, M., and Bashiri, M. (2014). “A New Mathematical Model Towards the Integration of Cell Formation with Operator Assignment and Inter-Cell Layout Problems in a Dynamic Environment”, Applied Mathematical Modelling, Vol. 38, No. 4, PP. 1237-1254. 13. Mahdavi, I. et al. (2012). “A New Mathematical Model for Integrating All Incidence Matrices in Multi-Dimensional Cellular Manufacturing System”, Journal of Manufacturing Systems, Vol. 31, No. 2, PP. 214-223. 14. Paydar, M. M., and Saidi-Mehrabad, M. (2015). “Revised Multi-Choice Goal Programming for Integrated Supply Chain Design and Dynamic Virtual Cell Formation with Fuzzy Parameters”, International Journal of Computer Integrated Manufacturing, Vol. 28, No. 3, PP. 251-265. 15. Mahdavi, I. et al. (2010). “Designing a Mathematical Model for Dynamic Cellular Manufacturing Systems Considering Production Planning and Worker Assignment”, Computers and Mathematics with Applications, Vol. 60, No. 4, PP. 1014-1025. 16. Kia, R. et al. (2013). “A Simulated Annealing for Intra-Cell Layout Design of Dynamic Cellular Manufacturing Systems with Route Selection, Purchasing Machines and Cell Reconfiguration”, Asia-Pacific Journal of Operational Research, Vol. 30, No. 4. 17. Haimes, Y. Y., Lasdon, L. S., and Wismer, D. A. (1971). “On A Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization”, IEEE Transactions on Systems Man and Cybernetics, Vol. 1, No.3, PP. 296-297. 18. Chankong, V., and Haimes, Y. Y. (1983). Multi-Objective Decision Making: Theory and Methodology. North-Holland. 19. Mavrotas, G. (2009). “Effective Implementation of the Ε-Constraint Method in Multi-Objective Mathematical Programming Problems”, Applied Mathematics and Computation, Vol. 213, No. 2, PP. 455-465. | ||
آمار تعداد مشاهده مقاله: 442 تعداد دریافت فایل اصل مقاله: 382 |