تعداد نشریات | 161 |
تعداد شمارهها | 6,489 |
تعداد مقالات | 70,096 |
تعداد مشاهده مقاله | 123,150,846 |
تعداد دریافت فایل اصل مقاله | 96,382,016 |
How different source regions across the Middle East change aerosol and dust particle characteristics | ||
Desert | ||
مقاله 7، دوره 24، شماره 1، شهریور 2019، صفحه 61-73 اصل مقاله (1.39 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jdesert.2019.72441 | ||
نویسندگان | ||
H. Ahmady-Birgani* 1؛ J.P. Engelbrecht2؛ M. Bazgir3 | ||
1Faculty of Natural Resources, Urmia University, Urmia, Iran | ||
2Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Pkwy, NV 89512, USA | ||
3Dept. of Water and Soil Engineering, Faculty of Agriculture, Ilam University, Ilam, Iran | ||
چکیده | ||
A major question is whether different source regions across the Middle East account for changes in aerosol and dust particle characteristics, which impact Western Iran. Therefore, over a period of sampling from April 2017 to April 2018, dust particles were collected in Western Iran from different cities including Urmia, Sanandaj, Sare-Pole-Zahab, Dehloran and Abadan. The research aim is to compare the chemical compositions of dust and aerosol samples collected during the dust events from the different regions. Results of the analysis of components indicate that during dust events, the concentrations of major and trace elements change. The variability of chemical species during dust events, noted by tracking the dust plumes in satellite images, was also assessed and the results related to the different source areas, namely the dry lands of North-Western Iraq and the desert areas of South-Eastern Syria, some parts of Kuwait and KSA (around the Persian Gulf). Generally, the results show, different source regions across the Middle East have individual chemical compositions with different abundances. | ||
کلیدواژهها | ||
Dust-Prone Regions؛ Dust Particles؛ Sediment Source Fingerprinting؛ The Middle East | ||
مراجع | ||
Ahmady-Birgani, H., K.G. McQueen, H. Mirnejad, 2018. Characteristics of mineral dust impacting the Persian Gulf. Aeolian Research, 30; 11-19. Ahmady-Birgani, H., E. Agahi, S.J. Ahmadi, M. Erfanian, 2018. Sediment Source Fingerprinting of the Lake Urmia Sand Dunes. Scientific Reports, 8; 206. Ahmady-Birgani, H., K.G. McQueen, M. Moeinaddini, H. Naseri, 2017. Sand dune encroachment and desertification processes of the Rigboland Sand Sea, Central Iran. Scientific Reports, 7 (1); 1523. Ahmady-Birgani, H., H. Mirnejad, S. Feiznia, K.G. McQueen, 2015. Mineralogy and geochemistry of atmospheric particulates in western Iran. Atmospheric Environment, 119; 262-272. Al-Dabbas, M. A., M.A. Abbas, R.M. Al-Khafaji, 2012. Dust storms loads analyses-Iraq. Arabian Journal of Geosciences, 5; 121-131. Bozlaker, A., J.M. Prospero, J. Price, S. Chellam, 2018. Linking Barbados mineral dust aerosols to North African sources using elemental composition and radiogenic Sr, Nd, and Pb isotope signatures. Journal of Geophysical Research: Atmospheres, 123; 1384- 1400. Bullard, J. E., M. Baddock, T. Bradwell, J. Crusius, E. Darlington, D. Gaiero, C. McKenna‐Neuman, 2016. High‐latitude dust in the Earth system. Reviews of Geophysics, 54; 447-485. Dentener, F. J., G.R. Carmichael, Y. Zhang, J. Lelieveld, P.J. Crutzen, 1996. Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research: Atmospheres, 101; 22869- 22889. Engelbrecht, J. P., R. K. M. Jayanty, 2013. Assessing sources of airborne mineral dust and other aerosols, in Iraq. Aeolian Research, 9; 153-160. Engelbrecht, J. P., E. V. McDonald, J.A. Gillies, R. K. M. Jayanty, G. Casuccio, A. W. Gertler, 2009a. Characterizing mineral dusts and other aerosols from the Middle East—part 1: ambient sampling. Inhalation Toxicology, 21; 297-326. Engelbrecht, J. P., E. V. McDonald, J. A. Gillies, R. K. M. “Jay” Jayanty, G. Casuccio, A. W. Gertler, 2009b. Characterizing mineral dusts and other aerosols from the Middle East—Part 2: Grab samples and re- suspensions. Inhalation Toxicology, 21; 327-336. Friese, C. A., J.A. Van Hateren, C. Vogt, G. Fischer, J.B.W. Stuut, 2017. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania. Atmospheric Chemistry & Physics, 17. Furman, H. K. H., 2003. Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor and Built Environment, 12; 419-426. Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, M. Zhao, 2012. Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50 (3). Goudie, A. S., N. J. Middleton, 2006. Desert dust in the global system. Springer Science & Business Media. Indoitu, R., G. Kozhoridze, M. Batyrbaeva, I. Vitkovskaya, N. Orlovsky, D. Blumberg, L. Orlovsky, 2015. Dust emission and environmental changes in the dried bottom of the Aral Sea. Aeolian Research, 17; 101-115. Mahowald, N., 2011. Aerosol indirect effect on biogeochemical cycles and climate. Science, 334; 794-796. Mardi, A. H., A. Khaghani, A.B. MacDonald, P. Nguyen, N. Karimi, P. Heidary, A. Sorooshian, 2018. The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Science of the Total Environment, 633; 42-49. Pi, H., B. Sharratt, G. Feng, J. Lei, 2017. Evaluation of two empirical wind erosion models in arid and semi- arid regions of China and the USA. Environmental Modelling & Software, 91; 28-46. Pourmand, A., J.M. Prospero, A. Sharifi, 2014. Geochemical fingerprinting of trans-Atlantic African dust based on radiogenic Sr-Nd-Hf isotopes and rare earth element anomalies. Geology, 42; 675-678. Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 40; 2-1. Rashki, A., P.G. Eriksson, C.D.W. Rautenbach, D.G. Kaskaoutis, W. Grote, J. Dykstra, 2013. Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere, 90; 227-236. Ravi, S., P. D'odorico, D. D. Breshears, J. P. Field, A. S. Goudie, T. E. Huxman, S. Van Pelt, 2011. Aeolian processes and the biosphere. Reviews of Geophysics, 49 (3). Roth, B., K. Okada, 1998. On the modification of sea- salt particles in the coastal atmosphere. Atmospheric Environment, 32; 1555-1569. Scheuvens, D., L. Schütz, K. Kandler, M. Ebert, S. Weinbruch, 2013. Bulk composition of northern African dust and its source sediments—A compilation. Earth-Science Reviews, 116; 170-194. Sharifi, A., L.N. Murphy, A. Pourmand, A.C. Clement, E.A. Canuel, A.N. Beni, H. Ahmady-Birgani, 2018. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia. Earth and Planetary Science Letters, 481; 30-40. Singer, A., T. Zobeck, L. Poberezsky, E. Argaman, 2003. The PM10and PM2· 5 dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. Journal of Arid Environments, 54; 705- 728. Webb, N. P., J. W. Van Zee, J. W. Karl, J. E. Herrick, E.M. Courtright, B. J. Billings, J. L. Hand, 2017. Enhancing wind erosion monitoring and assessment for US rangelands. Rangelands, 39; 85-96. WHO Report, 2016. World Health Organization Urban Ambient Air Pollution Database, 2016 Update. Wu, G., B. Xu, C. Zhang, S. Gao, T. Yao, 2009. Geochemistry of dust aerosol over the Eastern Pamirs. Geochimica et Cosmochimica Acta, 73(4), 977-989. Wurzler, S., T.G. Reisin, Z. Levin, 2000. Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. Journal of Geophysical Research: Atmospheres, 105; 4501- 4512. Zarasvandi, A., E. J. M. Carranza, F. Moore, F. Rastmanesh, 2011. Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). Journal of Geochemical Exploration, 111; 138- 151. | ||
آمار تعداد مشاهده مقاله: 866 تعداد دریافت فایل اصل مقاله: 660 |