تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,089 |
تعداد دریافت فایل اصل مقاله | 97,221,956 |
The Effects of Simulated Vibration Stress on Plant Height and Some Physical and Mechanical Properties of Coleus blumei Benth | ||
International Journal of Horticultural Science and Technology | ||
مقاله 11، دوره 6، شماره 2، اسفند 2019، صفحه 273-282 اصل مقاله (934.79 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.22059/ijhst.2019.282693.298 | ||
نویسندگان | ||
Atefeh Safaei Far1؛ Abdolhossein Rezaei Nejad* 1؛ Feizollah Shahbazi2؛ Sadegh Mousavi-Fard1 | ||
1Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Iran. | ||
2Department of Biosystem Engineering, Faculty of Agriculture, Lorestan University, Iran | ||
چکیده | ||
Non-chemical control of plant growth is an important goal for the production of ornamental pot plants. In the present study the effects of simulated vibration on plant height and some physical and mechanical properties of Coleus stem were investigated. The study was conducted as a factorial experiment based on a completely randomized design with three replications. Vibration stresses were performed using a laboratory vibration simulator and the effects of vibration parameters such as frequency and duration on the stem characteristics of Coleus plants were examined. Vibration frequency included three levels of 7.5, 10 and 12.5 Hz and vibration duration included three levels of 0 (control), 5 and 10 min. Based on the obtained results, vibration stress caused significant decrease in the height and surface area of the stems. Vibration frequency of 12.5 Hz with 10 min duration caused 31% decrease in plant height in comparing to the control samples. Mechanical properties of stems including modulus of elasticity, bending force, and bending stress were reduced by increasing vibration frequency and duration when compared to the control samples. In conclusion, the results of the current study indicated that vibration stress on Coleus decreased plant height while increased the elasticity and resistance to the fracture caused by mechanical forces of the stem. | ||
کلیدواژهها | ||
Bending stress؛ Deflection of stem؛ Modulus of elasticity؛ Plant height؛ Vibration stress | ||
مراجع | ||
10. Garner L.C, Langton F.A. 1997. Brushing pansy (Viola tricolor L.) transplants: a flexible, effective method for controlling plant size. Scientia horticulturae 70(2), 187. https://doi.org/10.1016/S0304-4238 (97)00023-X 11. Graham T, Wheeler R. 2017. Mechanical stimulation modifies canopy architecture and improves volume utilization efficiency in bell pepper: implications for bioregenerative life-support and vertical farming. Open Agriculture 2(1), 42-51. https://doi.org/10.1515/opag-2017-0004 12. Henry H.A, Thomas S.C. 2002. Interactive effects of lateral shade and wind on stem allometry, biomass allocation, and mechanical stability in Abutilon theophrasti (Malvaceae). American Journal of Botany 89(10), 1609-1615. https://doi.org/10.3732/ajb.89.10.1609 13. Heuchert J.C, Marks J.S, Mitchell C.A. 1983. Strengthening of tomato shoots by gyratory shaking. Journal American Society for Horticultural Science. http://www.nal.usda.gov/ 14. Jaffe M.J, Biro R, Bridle K. 1980. Thigmomorphogenesis: calibration of the parameters of the sensory function in beans. Physiologia Plantarum 49(4), 410-416. https://doi.org/10.1111/j.1399-3054.1980.tb03326.x 15. Jaffe M.J Leopold A.C, Staples R.C. 2002. Thigmo responses in plants and fungi. American Journal of Botany 89(3), 375-382. https://doi.org/10.3732/ajb.89.3.375 16. Jones R.S, Coe L.L, Montgomery L, Mitchell C.A. 1990. Seismic stress responses of soybean to different photosynthetic photon flux. Annals of botany 66(6), 617-622. https://doi.org/10.1093/oxfordjournals.aob.a088075 17. Khajepoor R, Kafei M, Nezamei A, Khazaei H. 2017. The effect of wind mechanical stress on some morphologicall traits of two semi-dwarf and normal wheat (Triticum aestivum) cultivars. Journal of Crop Production 10, 101-114. 18. Khalighi A. 1997. Potting and Breeding Ornamental Plants of Iran. Ruzbehan Publications 19. Latimer J.G, Mitchell C.A. 1988. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings. Scientia horticulturae 36(1-2), 37-46. https://doi.org/10.1016/0304-4238 (88)90005-2 20. Lykas C, Kittas C, Katsoulas N, Papafotiou M. 2008. Gardenia jasminoides height control using a photoselective polyethylene film. HortScience, 43(7), 2027-2033. https://doi.org/10.21273/HORTSCI.43.7.2027 21. Mitchell S.J. 2003. Effects of mechanical stimulus, shade, and nitrogen fertilization on morphology and bending resistance in Douglas-fir seedlings. Canadian Journal of Forest Research, 33(9), 1602-1609. https://doi.org/10.1139/x03-077 22. Nagpal A, Singh B, Sharma S, Rani G, Virk G.S. 2008. Coleus spp.: Micropropagation and in vitro production of secondary metabolites. Medicinal and Aromatic Plant Science and Biotechnology 2(1), 1-7. 23. Niklas K.J. 1998. Effects of vibration on mechanical properties and biomass allocation pattern of Capsella bursa-pastoris (Cruciferae). Annals of Botany 82(2), 147-156. https://doi.org/10.1006/anbo.1998.0658 24. Paul-Victor C, Rowe N. 2010. Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana. Annals of botany 107(2), 209-218. https://doi.org/10.1093/aob/mcq227 25. Pöntinen V, Voipio I. 1992. Different methods of mechanical stress in controlling the growth of lettuce and cauliflower seedlings. Acta Agriculturae Scandinavica B-Plant Soil Sciences 42(4), 246-250. https:// doi/abs/10.1080/09064719209410220 26. Pouri H.A, Nejad A.R, Shahbazi F. 2017. Effects of simulated in-transit vibration on the vase life and post-harvest characteristics of cut rose flowers. Horticulture, Environment, and Biotechnology 58(1), 38-47. https://doi.org/10.1007/s13580-017-0069-5 27. Pruyn M.L, Ewers III B.J, Telewski F.W. 2000. Thigmomorphogenesis: changes in the morphology and mechanical properties of two Populus hybrids in response to mechanical perturbation. Tree Physiology 20(8), 535-540. https://doi.org/10.1093/treephys/20.8.535 28. Shahbazi F, Nazari Galedar M. 2012. Bending and shearing properties of safflower stalk. Journal of Agricultural Science and Technology 14(4), 743-754. 29. Shahbazi F, Rajabipour A, Mohtasebi S, Rafie S. 2010. Simulated in-transit vibration damage to watermelons. Journal of Agricultural Science and Technology 12(1), 23-24. 30. Sone K, Noguchi K, Terashima I. 2006. Mechanical and ecophysiological significance of the form of a young Acer rufinerve tree: vertical gradient in branch mechanical properties. Tree physiology 26(12), 1549-1558. https://doi.org/10.1093/treephys/26.12.1549 31. Suge H. 1978. Growth and gibberellin production in Phaseolus vulgaris as affected by mechanical stress. Plant and Cell Physiology 19(8), 1557-1560. https://doi.org/10.1093/oxfordjournals.pcp.a075741 Timoshenko S. 1983. History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. Courier Corporation. | ||
آمار تعداد مشاهده مقاله: 547 تعداد دریافت فایل اصل مقاله: 624 |