تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,506 |
تعداد مشاهده مقاله | 124,127,214 |
تعداد دریافت فایل اصل مقاله | 97,234,962 |
مدلسازی و شبیهسازی بیوسنسور آنزیمی برای تشخیص آفلاتوکسین B1 با استفاده از شبکه عصبی مصنوعی | ||
مهندسی بیوسیستم ایران | ||
مقاله 3، دوره 51، شماره 1، فروردین 1399، صفحه 23-35 اصل مقاله (1.5 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2019.290736.665232 | ||
نویسندگان | ||
سید جواد سجادی؛ سلیمان حسین پور* ؛ شاهین رفیعی | ||
گروه مهندسی مکانیک ماشینهای کشاورزی، دانشکده مهندسی و فناوری پردیس کشاورزی و منابع طبیعی دانشگاه تهران | ||
چکیده | ||
افلاتوکسین B1 (AFB1) سمی ترین گروه آفلاتوکسینهاست که باعث آلودگی محصولات کشاورزی شده و اثرات مرگ باری بر سلامت انسان دارد. تشخیص AFB1 در مواد غذایی و خوراکی توسط بیوسنسورها سریع، کم هزینه و دقیق است. در این مقاله به مدلسازی و شبیهسازی واکنشهای شیمیایی در بیوسنسور پتانسیومتری AFB1 جهت تعیین ثابتهای بهینه نرخ واکنش پرداخته شده است. شبیهسازی واکنشهای شیمیایی توسط نرم افزار COMSOL و بهینه سازی ثابتهاینرخ واکنش توسط شبکه عصبی مصنوعی و الگوریتم ژنتیک انجام شد. علاوه بر آن شبکه عصبی مصنوعی به عنوان تابع هدف مورد استفاده در الگوریتم ژنتیک به کار رفت. داده های تولید شده در مرحله شبیه سازی جهت آموزش و ارزیابی عملکرد شبکه عصبی مورد استفاده قرار گرفتند. نتایج بدست آمده نشان داد مدل COMSOL در مقایسه با دادههای تجربی، پاسخ بیوسنسور را با MAPE برابر با 1023/0 % شبیه سازی کرد. شبکه عصبی مصنوعی آموزش داده شده با ساختار 1-48-5 نیز قادر به پیش بینی پاسخ بیوسنسور با MAPE برابر با 7074/0 % ، 9458/0 % ، 7473/0 % و 7492/0 % به ترتیب برای دادههای گروه آموزش، اعتبار سنجی، آزمون و کل دادهها بود. نتایج بهینهسازی ثابتهای نرخ واکنش توسط الگوریتم ژنتیک و شبکه عصبی مصنوعی نشان داد شبیه سازی پاسخ بیوسنسور AFB1 با استفاده از شبکه عصبی مصنوعی و پارامترهای ورودی انتخاب شده توسط الگوریتم ژنتیک دارای کمترین خطای MAPE برابر با 0026/0 % در پیش بینی میزان مهار آنزیم AChE توسط AFB1 است. | ||
کلیدواژهها | ||
بیوسنسور؛ مدلسازی؛ کامسول؛ شبکه عصبی مصنوعی؛ الگوریتم ژنتیک | ||
عنوان مقاله [English] | ||
Modeling and Simulation of Enzymatic Biosensor for Detecting Aflatoxin B1 Using Artificial Neural Network | ||
نویسندگان [English] | ||
Sayed Javad Sajadi؛ Soleiman Hosseinpour؛ shahin rafiee | ||
Agricultural Machinery Engineering Dept., Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran. | ||
چکیده [English] | ||
Aflatoxin B1 (AFB1) is one of the most toxic Aflatoxins that contaminates agricultural products and causes deathlike effects on human health. Determination of AFB1 in food by biosensors is fast, low cost and accurate. In this paper, modeling and simulation of chemical reactions in the AFB1 potentiometric biosensor is performed to determine the optimal reaction rate constants. Enzymatic reactions are simulated using COMSOL software and reaction rates are optimized by Artificial Neural Network (ANN) and Genetic Algorithm (GA). The fitness function of GA is defined by deploying ANN. The data generated during the simulation step were used to train and evaluate the performance of the neural network. Compared with experimental data, COMSOL model simulated biosensor response with MAPE equal to 0.1023 %. In addition trained ANN with 5-48-1 structure predicted biosensor response with MAPEs equal to 0.7074 %, 0.9458 %, 0.7473 % and 0.7492 % for train, validation, test and total data sets respectively. Reaction rates were optimized by Artificial Neural Network (ANN) and Genetic Algorithm. Modeling results showed that trained Neural Network using Genetic Algorithm optimized reaction rates has the lowest MAPE equal to 0.0026 % compared with other models in prediction of AChE enzyme inhibition by AFB1. | ||
کلیدواژهها [English] | ||
Biosensor, modeling, COMSOL, Artificial Neural Network, Genetic Algorithm | ||
مراجع | ||
Adam, M. A. A., Tabana, Y. M., Musa, K. B., & Sandai, D. A. (2017, March). Effects of different mycotoxins on humans, cell genome and their involvement in cancer (Review). Oncology Reports, Vol. 37, pp. 1321–1336. https://doi.org/10.3892/or.2017.5424 Bahadir, E. B., & Sezgintürk, M. K. (2015, June 1). Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Analytical Biochemistry, Vol. 478, pp. 107–120. https://doi.org/10.1016/j.ab.2015.03.011 Baronas, R., Ivanauskus, F., & Kulys, J. (2010). Mathematical modeling of biosensors. An introduction for chemists and mathematicians. In Springer Series on Chemical Sensors and Biosensors (Vol. 4). https://doi.org/10.1007/b100321 Baronas, R, Ivanauskas, F., Maslovskis, R., & Vaitkus, P. (2004). An analysis of mixtures using amperometric biosensors and artificial neural networks. JOURNAL OF MATHEMATICAL CHEMISTRY, 36(3), 281–297. https://doi.org/10.1023/B:JOMC.0000044225.76158.8e Baronas, Romas. (2017). Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors. Electrochimica Acta, 240, 399–407. https://doi.org/10.1016/j.electacta.2017.04.075 Baronas, Romas, Ivanauskas, F., Maslovskis, R., Radavičius, M., & Vaitkus, P. (2007). Locally weighted neural networks for an analysis of the biosensor response. In Kybernetika (Vol. 43). Baronas, Romas, Kulys, J., Zilinskas, A., Lancinskas, A., & Baronas, D. (2013). Optimization of the multianalyte determination with biased biosensor response. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 126, 108–116. https://doi.org/10.1016/j.chemolab.2013.05.003 Baronas, Romas, Žilinskas, A., & Litvinas, L. (2016). Optimal design of amperometric biosensors applying multi-objective optimization and decision visualization. Electrochimica Acta, 211, 586–594. https://doi.org/10.1016/j.electacta.2016.06.101 Bazin, I., Tria, S. A., Hayat, A., & Marty, J. L. (2017). New biorecognition molecules in biosensors for the detection of toxins. Biosensors and Bioelectronics, 87, 285–298. https://doi.org/10.1016/j.bios.2016.06.083 Bensana, A., Achi, F., Bouguettoucha, A., & Chebli, D. (2019). Amperometric Determination of Hydrogen Peroxide and its Mathematical Simulation for Horseradish Peroxidase Immobilized on a Sonogel Carbon Electrode. Analytical Letters, 52(8), 1215–1235. https://doi.org/10.1080/00032719.2018.1528614 Bergveld, P. (1970). Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. In IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING. Cometa, M. F., Lorenzini, P., Fortuna, S., Volpe, M. T., Meneguz, A., & Palmery, M. (2005). In vitro inhibitory effect of aflatoxin B 1 on acetylcholinesterase activity in mouse brain. Toxicology, 206, 125–135. https://doi.org/10.1016/j.tox.2004.07.009 Dickinson, E. J. F., Ekström, H., & Fontes, E. (2014). COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review. Electrochemistry Communications, 40, 71–74. https://doi.org/10.1016/j.elecom.2013.12.020 Dokos, S. (2017). Modelling Organs, Tissues, Cells and Devices Using MATLAB and COMSOL Multiphysics. https://doi.org/10.1007/978-3-642-54801-7 Eaborn, C. (1988). Compendium of chemical Terminology: IUPAC Recommendations. Journal of Organometallic Chemistry, 356(2), C76–C77. https://doi.org/10.1016/0022-328x(88)83113-9 Ferreira, L. S., De Souza, M. B., & Folly, R. O. M. (2001). Development of an alcohol fermentation control system based on biosensor measurements interpreted by neural networks. Sensors and Actuators, B: Chemical, Vol. 75, pp. 166–171. https://doi.org/10.1016/S0925-4005(01)00540-8 Gell, R. M., & Carbone, I. (2019). HPLC quantitation of aflatoxin B 1 from fungal mycelium culture. Journal of Microbiological Methods, 158(January), 14–17. https://doi.org/10.1016/j.mimet.2019.01.008 Hansmann, T., Sanson, B., Stojan, J., Weik, M., Marty, J.-L., & Fournier, D. (2009). Kinetic insight into the mechanism of cholinesterasterase inhibition by aflatoxin B1 to develop biosensors. Biosensors and Bioelectronics, 24(7), 2119–2124. https://doi.org/10.1016/j.bios.2008.11.006 Jun, Z., Yu-An, T., Xue-Lan, Z., & Jun, L. (2010). An improved dynamic structure-based neural networks determination approaches to simulation optimization problems. Neural Computing and Applications, 19(6), 883–901. https://doi.org/10.1007/s00521-010-0348-x Kaffash, A., Rostami, K., & Zare, H. R. (2019). Modeling of an electrochemical nanobiosensor in COMSOL Multiphysics to determine phenol in the presence of horseradish peroxidase enzyme. Enzyme and Microbial Technology, 121, 23–28. https://doi.org/10.1016/j.enzmictec.2018.11.001 Mirjalili, S. (2019). Genetic Algorithm. In Evolutionary Algorithms and Neural Networks (pp. 43–55). https://doi.org/10.1007/978-3-319-93025-1_4 Nautiyal, L., Shivach, P., & Ram, M. (2018). Optimal Designs by Means of Genetic Algorithms. In Soft Computing Techniques and Applications in Mechanical Engineering (pp. 151–161). https://doi.org/10.4018/978-1-5225-3035-0.ch007 P, P., & S, V. (2018). A numerical modelling of an amperometric-enzymatic based uric acid biosensor for GOUT arthritis diseases. Informatics in Medicine Unlocked, 12, 143–147. https://doi.org/10.1016/J.IMU.2018.03.001 Pachauri, V., & Ingebrandt, S. (2016). Biologically sensitive field-effect transistors: from ISFETs to NanoFETs. In P. Estrela (Ed.), BIOSENSOR TECHNOLOGIES FOR DETECTION OF BIOMOLECULES (pp. 81–90). https://doi.org/10.1042/EBC20150009 Pohanka, M. (2016). Electrochemical biosensors based on acetylcholinesterase and butyrylcholinesterase. A review. International Journal of Electrochemical Science, 11(9), 7440–7452. https://doi.org/10.20964/2016.09.16 Rowe, J. E. (2015). Genetic Algorithms. In Springer Handbook of Computational Intelligence (pp. 825–844). https://doi.org/10.1007/978-3-662-43505-2_42 Sheliakina, M., Arkhypova, V., Soldatkin, O., Saiapina, O., Akata, B., & Dzyadevych, S. (2014). Urease-based ISFET biosensor for arginine determination. Talanta, 121, 18–23. https://doi.org/10.1016/j.talanta.2013.12.042 Sherma, J. (2000). Thin-layer chromatography in food and agricultural analysis. Journal of Chromatography A, 880(1–2), 129–147. https://doi.org/10.1016/S0021-9673(99)01132-2 Sichilongo, K. F., Obuseng, V. C., & Okatch, H. (2012). Applications of gas chromatography-mass spectrometry (GC-MS): An examination of selected African cases. Chromatographia, 75(17–18), 1017–1037. https://doi.org/10.1007/s10337-012-2277-6 Songsermsakul, P., & Razzazi-Fazeli, E. (2008, June 18). A review of recent trends in applications of liquid chromatography-mass spectrometry for determination of mycotoxins. Journal of Liquid Chromatography and Related Technologies, Vol. 31, pp. 1641–1686. https://doi.org/10.1080/10826070802126395 Stepurska, Kateryna, Dzyadevych, S., & Gridin, S. (2018). Potentiometric enzyme biosensor for aflatoxin B1 detection – Kinetic simulation. Sensors and Actuators, B: Chemical, 259, 580–586. https://doi.org/10.1016/j.snb.2017.12.092 Stepurska, K. V., Soldatkin, O. O., Kucherenko, I. S., Arkhypova, V. M., Dzyadevych, S. V., & Soldatkin, A. P. (2015). Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Analytica Chimica Acta, 854, 161–168. https://doi.org/10.1016/j.aca.2014.11.027 Su, Y. (2014). Modeling and characteristic study of thin film based biosensor based on COMSOL. Mathematical Problems in Engineering, 2014, 1–6. https://doi.org/10.1155/2014/581063 Turner, A. P. F. (2013). Biosensors: Sense and sensibility. Chemical Society Reviews, 42(8), 3184–3196. https://doi.org/10.1039/c3cs35528d Wang, L. (2005). A hybrid genetic algorithm-neural network strategy for simulation optimization. Applied Mathematics and Computation, 170(2), 1329–1343. https://doi.org/10.1016/j.amc.2005.01.024 Žilinskas, A., & Baronas, D. (2011). Optimization-based evaluation of concentrations in modeling the biosensor-aided measurement. Informatica, Vol. 22, pp. 589–600. | ||
آمار تعداد مشاهده مقاله: 675 تعداد دریافت فایل اصل مقاله: 627 |