تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,096,095 |
تعداد دریافت فایل اصل مقاله | 97,202,814 |
Modeling the abusive of some doctors of patient trust using Markov chain and ZD strategy | ||
Advances in Industrial Engineering | ||
مقاله 5، دوره 53، شماره 1، فروردین 2019، صفحه 523-528 اصل مقاله (525.11 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jieng.2019.275360.1680 | ||
نویسندگان | ||
Ali Bahraini1؛ Madjid Eshaghi Gorji* 2؛ Ali Ghaffari2 | ||
1ریاضیات محض، دانشگاه سمنان، سمنان، ایران | ||
2گروه ریاضی آمار، دانشگاه سمنان، سمنان، ایران | ||
چکیده | ||
In the present study, the abusive of some doctors from trusting a patient to earn the more financial benefits is investigated using the Markov chain and Zero-Determinant (ZD) strategy. When someone gets sick and visits a doctor, it is clear that the patient should trust the doctor and considers medical advices certainly. The doctors who abuse the trust of patients, they usually use tricks (including scare the patient from getting worse of disease, performing unnecessary tests and performing unnecessary surgery) to prolong the course of the patient's treatment especially for acute diseases. In order to model this problem, the ZD strategy is used for Repetitive games. This strategy helps the doctors to unilaterally consider the probable outcome of opponent (patient) with the desired amount, or to apply a linear relationship between doctor and opponent's consequences. According to the results of the game between the doctor and the patient, it can be concluded that when the doctor’s recommendations aren’t effective for the patient, the patient must go to another doctor to obtain the correct treatment | ||
کلیدواژهها | ||
"Game theory"؛ " Markov chain"؛ "Zero-Determinant (ZD) strategy" | ||
مراجع | ||
10. Benoit, J. P., and Krishna, V., (1985) ,“Finitely Repeated Games,”,Econometrica, vol. 53, issue 4, 905-22.
11. Bernheim, B. D., “Rationalizable Strategic Behavior”, Econometrica: Journal of the Econometric Society, PP. 1007–1028, 1984.
12. Nash, J., (1951). “Non-Cooperative Games”. Annals of Mathematics, PP. 286–295.
13. Osborne, M. J., and Rubinstein, A., (1994). A Course in Game Theory. MIT Press. | ||
آمار تعداد مشاهده مقاله: 499 تعداد دریافت فایل اصل مقاله: 377 |