تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,084,758 |
تعداد دریافت فایل اصل مقاله | 97,188,903 |
اندازه گیری میزان گردوغبار ریزشی و تحلیل فضایی آن درمناطق 22گانه شهر تهران | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 6، دوره 51، شماره 4، دی 1398، صفحه 633-649 اصل مقاله (1.68 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2019.285122.1007415 | ||
نویسندگان | ||
فاطمه ارسلانی1؛ بهلول علیجانی2؛ مهری اکبری3؛ شیرین محمدخان* 4 | ||
1دانشجوی دکتری مخاطرات آب و هوا، دانشکدة علوم جغرافیا، دانشگاه خوارزمی ، تهران، ایران | ||
2استاد گروه جغرافیای طبیعی، دانشکدة علوم جغرافیایی، دانشگاه خوارزمی تهران، ایران | ||
3استادیار گروه جغرافیای طبیعی، دانشکدة علوم جغرافیایی، دانشگاه خوارزمی، تهران، ایران | ||
4استادیار گروه جغرافیای طبیعی، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
هدف از پژوهش حاضر اندازهگیری و پهنهبندی غبار ریزشی شهر تهران در دورة آماری یکساله (1/10/۱۳۹۶-30/9/۱۳۹۷) است. بدینمنظور، غبار ریزشی شهر تهران جمعآوری شد. وزن غبار ریزشی در زمستان معادل با 18943.5 تن، در بهار معادل با 27119.5 تن، در تابستان معادل با 17111.2 تن، و در پاییز معادل با 23002.3 تن است. نقشۀ تحلیل فضایی گردوغبار ریزشی شهر تهران حاصل ترکیب نُه لایه بر اساس وزن تعیینشده برای هر لایه ترسیم شد. بیشترین میزان گردوغبار ریزشی در زمستان 1396 در غرب تهران و در بهار، تابستان، و پاییز 1397 در جنوب غرب تهران بوده است. بررسیهای میدانی ثابت کرد گردوغبار ریزشی در ارتباط مستقیم با ساختوساز شهری قرار دارد. این افزایش با pm10، تراکم کارخانهها، تراکم پوشش گیاهی، رطوبت نسبی، بارش بالای 5 میلیمتر، دما و سرعت و جهت باد نیز در ارتباط است. باد غالب تهران جهت غرب دارد که از معادن شن و ماسه میگذرد. باد غالب در تابستان جنوب شرقی است. باد جنوب شرقی از معادن شن و ماسه، کارخانههای سیمان عبور میکند و در مسیر خود گردوغبار این مناطق را وارد تهران میکند. | ||
کلیدواژهها | ||
تحلیل فضایی؛ تلة رسوبگیر MDCO؛ شهر تهران؛ گردوغبار ریزشی | ||
عنوان مقاله [English] | ||
Measuring the rate of dust falling and its spatial analysis in 22 districts of Tehran | ||
نویسندگان [English] | ||
Fatemeh Arsalani1؛ Bohloul Alijani2؛ Mehry Akbari3؛ Shirin Mohammadkhan4 | ||
1PhD Student of Climate Hazards, Faculty of Geography, University of Tehran, Tehran, Iran | ||
2Professor of Physical Geography, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran | ||
3Assistant Professor of Physical Geography, Faculty of geographical Sciences, Kharazmi University, Tehran, Iran | ||
4Assistant Professor of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
Introduction Dusts are referred to as aerosol particles are made up of different sources of land and humanization; they fall on the surface due to their size and density (Salman Zadeh et al., 2012). This phenomenon can damage infrastructures, telecommunications and agricultural products and affect transport through reduced visibility and cause a lot of economic damage (Song et al., 2007, Cao et al., 2016). The purpose of this study is to measure andspatial analysis of the city of Tehran in a one-year statistical period. Materials and methods In this research, we used the laboratory method to measure falling dust, collecting dust using Marble Dust Collector. For this purpose, the falling dust was collected using a Marble Dust Collector in 28 stations in Tehran during the statistical period. In order to analyze the spatial distribution of dust and falling dust analysis, we used factors includingthe air quality control company, the number of construction urban under construction in Tehran from Tehran Municipality Organization, mean maximum wind speed parameters, average relative humidity, days of rainfall above 5 mm, the average temperature from the Iran meteorological organization in one-year statistical period (2017) to enter the ArcMap10.5 environment and preparing the desired layers. Statistical analysis of the data showed that the dust distribution have regional (trend) behavior. Therefore, universal trend is better suited. Due to the high preconditions of universal trend in the area with fewer meteorological stations (Chitgar, Geophysics, Mehrabad and Shemiran) is not applicable. Therefore, the IDW method was selected for climatic parameters. Also, the vegetation cover and factories layer were taken to analyze by Euclidean Distance of these complications in GIS for Tehran. Then, all the layers were weighed to determine the weights for using the Reclassify tool. Then, using Expert Choice software, we compared all the layers in pairwise comparison to estimate the value of each layer relative to the other layers. We multiplied the values obtained at each level and transferred all layers to the Fuzzy Overlay tool. The final map of the spatial analysis of falling dust in Tehran city was obtained by using the Gamma 0.9 function. Also, daily speed and wind direction data were received from the Meteorological Organization of the country during the one-year statistical period (30/9/97- 1/10/96). With the help of the WRPLOT software for statistical analysis and the location of the wind, the windrose was drawn. Results and discussion The results of computations performed on the data from the collecting of falling dust in Tehran showed that the weights of falling dust in the winter of 2017 is 18943.5 tons, in the spring of 2018 it is equivalent to 27119.5 tons, in the summer of 2018/ it is equivalent to 17111.2 tons and in the fall of 2018 it is equivalent to 23002.3 tons. Also, the results showed that the highest falling dust was collected in spring, autumn, winter and summer, in order of volume. The spatial analysis of Tehran's falling dust is a combination of 9 layers, based on the weight assigned to each. The results showed that the highest amount of dust in the winter of 2017 was found in west Tehran. We had the lowest amount of falling dust in the north and northeast (regions 1 and 4). In the spring, summer and autumn of 2018, the density of the most falling dust was displaced slightly eastward and settled in the southwest. The lowest amount of dusts in these seasons was located in the north and northeast. The halo with the lowest amount of dust falling has expanded further in the autumn than spring and summer. Conclusion The results of this study showed that the spatial distribution of falling dust varies in different seasons. Analysis of the results showed that the source of falling dust in the city of Tehran is not uniform throughout the year. Field surveys have showed that the increase in falling dust in different parts of Tehran is directly related to urban construction. In the statistical year of the study, construction and subsequent falling dust has been less in eastern Tehran than that in west. This increase is also associated with pm10. The largest amount of pm10 was reported from the west and southwest, which simultaneously collected the highest amount of falling dust. The highest density of factories and the lowest vegetation density are in these areas. The climatic factors also contributed to these conditions. It was reported that the highest number of rainy days to exceed 5 mm was reported in north and north east of Tehran, where the lowest amount of dust was collected. The highest average temperature in different seasons is reported from Southwest Tehran where it has the highest amount of falling dust in spring, summer and autumn. In winter, climate conditions were slightly different from other seasons. The highest relative humidity reported in other seasons from the West has been reported from north and northeast of this season. The dust collected in winter is higher in the west than that in the southwest. The average maximum wind speed, which is in the west and south, it is in the winter, spring and autumn to the west and southwest. The particles are originating to some extent from Quds, Shahriar, and Malard cities, especially the sand dune areas. They are abandoned in agricultural land in Baharestan, Islam-Shahr and Robat-Karim, and then dust from these areas enters west Tehran. In addition, the wind disperses the dusts generated by construction around the city. In the summer, in addition to the west and southwest, there is wind for north and south east. The northern wind comes from Shemiranat, bringing fresh air to the north and north-east of Tehran. The southeast wind passes from the Pakdasht cement factories in Tehran and also over the abandoned agricultural land of Varamin. The low wind speed in these areas gives more time to hangs off more particles. However, climatic conditions with the lowest relative humidity, the highest temperature, and a lack of rainfall above 5 mm also help to pollute the southern part of Tehran. | ||
کلیدواژهها [English] | ||
Spatial analysis, Sediment trap, Tehran City, falling dust | ||
مراجع | ||
اکبری، ع.؛ عظیمزاده، ح.ر. ؛ اختصاصی، م.ر. و سلمانزاده، م. (1391). بررسی کمی غبار ریزشی (مطالعة موردی: شهر بهبهان- شهریور و مهر 1390، اولین همایش ملی بیابان، تهران، مرکز تحقیقات بینالمللی بیابان دانشگاه تهران. برومندی، پ. و بختیارپور، ا. (1395). منشأیابی ذرات گردوغبار با بررسی خصوصیات فیزیکی و شیمیایی آنها و مدلسازی عددی در شهرستان مسجد سلیمان، مجلة سلامت و محیط زیست، 4: 5۱۷-5۲۶. بهرامی، ح.ع.؛ جلالی، م.؛ درویشی بلورانی، ع. و عزیزی. ر. (1392). مدلسازی مکانی- زمانی وقوع طوفانهای گردوغبار در استان خوزستان، فصلنامة سنجش از دور و GIS ایران، ۲: ۹۵-۱۱۴. ترنجزر، ح.؛ مددی، م.ح. و حیدرزاده، م. (1396). اندازهگیری ریزگردها (غبار ریزشی) با استفاده از تلة رسوبگیر در دورة سهماهه (مطالعة موردی شهر قم)، چهارمین کنفرانس بینالمللی برنامهریزی و مدیریت، 2 و 3 خردادماه 1396. جعفری، ف. و خادمی، ح. (1393). ارزیابی نرخ فرونشست گردوغبار اتمسفری در نقاط مختلف شهر کرمان، فصلنامة علوم و فنون کشاورزی و منابع طبیعی، 70: 20۷-2۱۶. جلالی، م.؛ بهرامی، ح. و بلورانی، ع. (۱۳۹۱). بررسی ارتباط بین فاکتورهای اقلیمی و زمینی با وقوع طوفانهای گردوغبار با استفاده از تصاویر ماهوارهای (MODIS) مطالعة موردی: استان خوزستان، اولین همایش ملی بیابان، تهران، مرکز تحقیقات بینالمللی بیابان دانشگاه تهران. خسروی، م. (1387). تأثیرات محیطی اندرکنش نوسانهای رودخانة هیرمند با بادهای 120 روزة سیستان، فصلنامة تحقیقات جغرافیایی، 4: 19-48. رایگانی، ب.؛ خیراندیش، ز.؛ کرمانی، ف.؛ محمدی میاب، م. و ترابینیا، ع. (1395). شناسایی کانونهای بالفعل تولید گردوغبار با استفاده از دادههای سنجش از دور و شبیهسازی جریان هوا (مطالعة موردی: استان البرز)، فصلنامة مدیریت بیابان، 8: ۱6-۲6. سلمانزاده، م.؛ سعیدی، م. و نبی بیدهندی، غ.ر. (1391). آلودگی فلزات سنگین در غبارهای تهنشینشدة خیابانی تهران و ارزیابی ریسک اکولوژیکی آنها، محیطشناسی، 61: ۹-۱۸. صدریان، م.ر.؛ محمدخان، ش.؛ مشهدی، ن.؛ دشتکیان، ک. و علویپناه، س.ک. (1392). پهنهبندی غبار ریزشی شهر ایلام، سومین همایش ملی فرسایش بادی و طوفانهای گردوغبار، 25 تا 26 دیماه 1392، دانشگاه یزد. عظیمزاده، ح.ر.؛ منتظر قائم، م.؛ ترابی میرزایی، ف. و تجملیان، م. (1389). اندازهگیری غبار ریزشی سطح شهر یزد با استفاده از تلة رسوبگیر MDCO در دورة سهماهة تابستان 1389، دومین همایش ملی فرسایش بادی و طوفانهای گردوغبار، بهمنماه ۱۳۸۹، دانشگاه یزد. علیجانی، ب. (1394). تحلیل فضایی، فصلنامة تحلیل فضایی و مخاطرات محیطی، 3: 1-۱۴. علیجانی، ب. (1376). آب و هوای ایران، چ ۳، تهران: انتشارات دانشگاه پیام نور. قادری، ف.؛ کرمی، م.؛ شکاری، پ. و جعفری، ا. (1396). روند فرونشست گردوخاک اتمسفری و ارتباط آن با برخی عوامل اقلیمی و مکانی در شهرستان جوانرود، نشریة حفاظت آب و خاک، ۶: 123-140. کریمیان، ب.؛ لندی، ا.؛ حجتی، س. و احدیان. ج. (1395). بررسی خصوصیات فیزیکی و شیمیایی و کانیشناسی گردوغبار شهر اهواز، فصلنامة تحقیقات آب و خاک ایران، 1: 1۵۹-1۷۳. محمدی، ف.؛ کمالی، س. و اسکندری، م. (1394). ردیابی منابع گردوغبار در سطوح مختلف جو تهران با استفاده از مدل HYSPLIT.، فصلنامة جغرافیا و مخاطرات محیطی، 16: ۳۹-۵۴. مرکز آمار ایران (۱۳۹۵). گزیدةنتایج سرشماری عمومی نفوس و مسکن. Abdi Vishkaee, F.; Flamant, C.; Cuesta, J.; Flamant, P. and Khalesifard, H.R. (2011). Multiplatform servations of dust vertical distribution during transport over northwest Iran in the summertime, Geophysical Research, No. D05206: 1-13. Akbari, A.; Azimzadeh, H.R.; Ekhtesasi, M.R. and Salmanzadeh, M. (2012). An investigation on Falling Dust Measurement (case study:Behbahan City August and September 2011), The first national conference of desert, Tehran university. Albugami, S.; Palmer, S.; Cinnamon, J. and Meersmans, J. (2019). Spatial and Temporal Variations in the Incidence of Dust Storms in Saudi Arabia Revealed from In Situ Observations, Geosciences, 9: 2-20. Alijani, B. (2015). Spatial Analysis, Environmental Hazarts, 3: 1-14. Alijani, B. (1997). Iran’s climate, Publication University Payame Noor, Tehran. Azimi-zadeh, H.R.; MontazerGhaem, M.; TorabiMirzaei, F. and Tujmalian, M. (2011). Measurement of falling Dust in Yazd City Using MDCO during the Three Months of Summer 2010, The second National Conference on Wind Erosion and Dust Storms.University of Yazd, 16-17 Februay, 2011. Bahrami, H.A.; Jalali, M.; DarvishiBoloorani, A. and Azizi, R. (2013). spatial- temporal modeling of occurrence of dust storm in Khuzestan Province, Remote sensing and GIS, 2: 95-114. Bennion, P.; Hubbard, R.; O’Hara, S.; Wiggs, G.; Wegerdt, J.; Lewis, S.; Small, I.; Van der Meer, J. and Upshur, R. (2007). The impact of airborne dust on respiratory health in children living in the Aral Sea region, Epidemiology, 36: 1103-1110. Boloorani.D, A.; Nabavi, S.O.; Bahrami, B.; Mirzapour, F.; Kavosi, M.; Abasi, E. and Aziz, R. (2014). Investigation of dust storms entering WesternIran using remotely sensed data and synoptic analysis, Environmental Health Science & Engineering, 12: 1-12. Broomandi, P. and Bakhtiar Pour, A. (2017). Dust Source Identification Using Physical- Chemical Characterization and Numerical Modeling in Masjed Soleyman, Iranian Journal of Health and Environment, 9: 517-526. Cao, H.; Liu, J.; Wang, G.; Yang, G. and Luo, L. (2015). Identification of sand and dust storm source areasin Iran, Arid Land, 5: 567-578. Csavina, J.; Field, J.P.; Félix, O. and Avitia, A.Y. (2014). Effect of Wind Speed and Relative Humidity on Atmospheric Dust Concentrations in Semi-Arid Climates, Science of The Total Environment, 487C: 82-90. Dentener, F.; Carmichael, G.R.; Yang, Z.; Lelieveld , J. and Crutzen, P. (1998). Role of mineral aerosol as a reactive surface in the global troposphere, Geophysical Research, No. D17: 869-889. Dickerson, R.C.; Kondragunta, S.; Stenchikon, G.; Civerolo, K.L.; Doddridge, B.G. and Holben, B. (1997). The impact of aerosol an solar ultraviolet radiation and photochemical smog, Science, 278: 827-830. Ding, R.; Li, J.; Wang, S. and Ren, F. (2005). Decadal Change of the Spring Dust Storm in Northwest China and the Associated Atmospheric Circulation, Geophysical ResearchLetters, No. L 2808: 1-4. Ganor, E. (1975). Atmospheric dust in Israel. Sedimentological and meteorological analysis of dust deposition, Ph.D. Thesis, Hebrew University of Jerusalem. Ghaderi, F.; Karami, M.; Shekaari, P. and Jafari, A. (2017). Atmospheric dust deposition trend and its relation withselected climatic and spatial factors in Javanrood township, Water and Soil Conservation, 24: 123-140. Goossen, D. and Offer, Z. (2000). Wind tunnel and field calibrathon of six eolian dust samplers, Atmospheric Environemt, 34:1043-1057. Goudie, A.S. and Middleton, N.J. (2001). Saharan dust storms: nature and consequences, Earth-Science, 56: 179-204. Jafari, F. and Khademi, H. (2014). Evaluation of atmospheric dust subsidence in the city of kerman, Science and Technology of Agriculture and Natural Resources, 70: 207- 2016. Jia, Q. and Hung, Y. (2008). Coarse dust around mining areas-A study of available dust collectors and their efficiency, Lulea University of Technology, department of Civil and Environmental Engineeri. Jalali, M.; Bahrami, H.A. and Boloorani, A. (2012). Investigating the Relationship between Climate and Ground Factors with Dust Storms Using Satellite Images MODIS (Case Study: Khuzestan Province), First National Desert Conference, Tehran, University of Tehran International Desert Research Center. Karimian, B.; Landi, A.; Hojjati, S. and Ahdiyan, J. (2016). Study of physical, chemical and mineralogical characteristics of dust in Ahvaz city, Soil and Water Research, 1: 159-173. Khosravi, M. (2008). The Environmental Impact of Hirmand River and Sistan 120 Days Winds Interactions, Geographical Research, 4: 19-48. Kurosaki, Y. and Mikami, M. (2003). RecentFrequent Dust Events and Their Relationto Surface Wind in East Asia, Geophysical Research Letters, 14: 1-4. Lau, K.M.; Kim, K.M.; Sud, Y.C. and Walker, G.K. (2009). A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing, Annales of Geophysics, 27: 4023-4037. Modaihsh, A.S.; Ghoneim, A.; Al-Barakah, F.; Mahjoub, M. and Nadeem, M. (2017). Characterizations of Deposited Dust Fallout in Riyadh city, Saudi Arabia Environ. Stud, 26: 1599-1605. Modaihsh, A.S. and Mahjoub, M.O. (2013). Falling Dust Characteristics in Riyadh City, Saudi Arabia During Winter Months, APCBEE Procedia, 5: 50-58. Mohammadi, F.; Kamali, S. and Eskandari, M. (2015). Tracing dust sources in different atmosphere levels of Tehran using hybrid single-particle lagrangian integrated trajectory (HYSPLIT) model, Geography and Environental Hazards, 16: 39-54. Powell, J.T.; Chatziefthimiou, A.D.; Banack, S.A.; Cox, P.L. and Metcalf, J.S. (2013). Desert crust microorganisms, their environment, and human health, Arid Environments, 112: 127-133. Raygani, B.; Kheyrandish, F.; Kermani, M.; MohammadiMiyab, M. and Torabinia, A. (2016). Identification of active dust sources using remote sensing data and air flow simulation (Case study: Alborz province), Desert Management, 8: 15-26. Salman Zadeh, M.; Saeedi, M. and NabiBidHendi, GH.R. (2012). Heavy metals pollution in street dusts of Tehran and their ecological risk assessment, Environmental Studies, 61: 9-18. Sadrian, M.R.; Mohammad Khan, Sh.; Mashhadi, N.; Dashtkian, K. and AlaviPanah, S.K. (2013). Spatial analysis of falling dust in the city of Ilam, Third National Conference on Wind Erosion and Dust Storms, University of Yazd, 15-16 Januray, 2014. Statistical Center of Iran. Selected results of the 2016 national population and housing census. Shao, L:, Li, W.; Yang, SH.; Shi, Z. and Lu, S. (2007). Mineralogical characteristics of airborne particles collected in Beijing during a severe Asian dust storm period in spring 2002, Science in China Series D: Earth Sciences, 6: 953-959. Song, Z.; Wang, J. and Wang, S. (2007). Quantitative classification of northeast Asian dust events, Geophysical Research, No. D04, PP. 1-8. Sun, J.: Zhang, M. and Liu, T. (2001). Spatial and Temporal Characteristics of Dust Stormsin China and Its Surrounding Regions, 1960-1999: Relations to Source Area and Climate, Geophysical ResearchAtmospheres, No. D10, PP. 10325-10333. Ta, W.; Xiao, H.; Qu, J.; Xiao, Z.; Yang, G.; Wang, T. and Zhang, X. (2004). Measurements of dust deposition in GansuProvince, China, 1986–2000, Geomorphology, 57: 41-51. ToranjZar, H.; Madadi, M.H. and Heidarzadeh, M. (2017). Measurement of (dust falling) using sediment trap in the three month period (case study: Qom city), The 4th international conference on planning and management, 23-24 may 2017. Tegen, I.; Hollring, P.; Chin, M.; Fung, I.; Jocob, D. and Penner, J. (1997). Contribution of different aerosol species to the global aerosol extinction optical thickness, Geophysical Reserch, 20(23): 895-915. Wang, X.; Zhou, Z. and Dong, Z. (2006). Control of Dust Emissions by Geomorphic Conditions, Wind Environments and Land Use in Northern China: An Examination Based on Dust Storm Frequency from 1960 to 2003, Geomorphology, 3: 292-308. Wang, X.; Zhou, Z. and Dong, Z. (2006). Control of Dust Emissions by Geomorphic Conditions, Wind Environments and Land Use in Northern China: An Examination Based on Dust Storm Frequency from 1960 to 2003, Geomorphology, 81: 292-308. Xuan, J.; Sokolik, IN.; Hao, J.; Guo, F.; Mao, H. and Yang, G. (2004). Identification and characterization of atmospheric mineral dust in East Asia, Atmospheric Environments, 36: 6239-6252. Yang, B.; Brauning, A.; Zhang, Z.; Dong, ZH. and Esper, J. (2007). Dust Storm Frequency and Its Rlatiom to Climate Changes in Northern China during the Past 1000 Years, Atmospheric Environment, 41: 9288-9299. Yuki, S.; Buho, H.; Yuta, D.; Eunice, N. and Akihiko, K. (2017). The Interactions Between Precipitation, Vegetation and Dust Emission Over Semi-Arid Mongolia, Atmospheric Chemistry Physics, pp. 1-10. | ||
آمار تعداد مشاهده مقاله: 702 تعداد دریافت فایل اصل مقاله: 521 |