تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,506 |
تعداد مشاهده مقاله | 124,125,324 |
تعداد دریافت فایل اصل مقاله | 97,233,771 |
ارزیابی و پیشبینی مکانی مخاطرۀ زمینلغزش در جادۀ کوهستانی سنندج-کامیاران با استفاده از الگوریتمهای پیشرفتۀ دادهکاوی | ||
مدیریت مخاطرات محیطی | ||
مقاله 2، دوره 6، شماره 4، دی 1398، صفحه 317-340 اصل مقاله (1.68 M) | ||
نوع مقاله: پژوهشی کاربردی | ||
شناسه دیجیتال (DOI): 10.22059/jhsci.2020.294693.527 | ||
نویسندگان | ||
صالح میرزانیا1؛ هیمن شهابی* 2 | ||
1کارشناسی ارشد رشتۀ مخاطرات محیطی، گروه ژئومورفولوژی، دانشکدۀ منابع طبیعی، دانشگاه کردستان | ||
2استادیار گروه ژئومورفولوژی، دانشکدۀ منابع طبیعی، دانشگاه کردستان | ||
چکیده | ||
زمینلغزشها از بلایای طبیعی هستند که سالانه خسارتهای مالی و جانی زیادی را در کشور ایجاد میکنند. شناخت مناطق پرخطر میتواند در کاهش خسارتها و تصمیمگیری در زمینۀ سیاستهای توسعۀ اراضی مؤثر باشد. هدف این پژوهش، پیشبینی مکانی خطر زمینلغزش در محدودۀ جادۀ ارتباطی سنندج-کامیاران در استان کردستان است. در این تحقیق، پهنهبندی خطر زمینلغزش با استفاده از الگوریتمهای پیشرفتۀ دادهکاوی از قبیل مدل تابع شواهد قطعی (EBF) و شواهد وزنی (WOE) انجام گرفت. ابتدا 79 زمینلغزش با استفاده از پیمایش میدانی شناسایی شد. سپس این نقاط بهطور تصادفی بهمنظور تهیۀ مدل و اعتبارسنجی بهترتیب به دو گروه آموزش (70 درصد، 55 نقطه) و اعتبارسنجی (30 درصد، 24 نقطه) تقسیم شدند. در این پژوهش، با توجه به تحقیقات قبلی و شرایط منطقه، چهارده عامل مؤثر در وقوع زمینلغزشها شامل شیب، جهت شیب، ارتفاع، فاصله از رودخانه، تراکم رودخانه، فاصله از گسل، فاصله از جاده، کاربری اراضی، جنس خاک، انحنای شیب، لیتولوژی، شاخص تفرق پوشش گیاهی ((NDVI، شاخص توان آبراهه (SPI) و شاخص رطوبت توپوگرافی (TWI) برای پهنهبندی پتانسیل خطر زمینلغزش در نظر گرفته شدند. همچنین در این پژوهش با استفاده از منحنی ویژگی عملگر نسبی (ROC)، عملکرد هر دو مدل بررسی شد.نتایج تحلیل منحنی ویژگی عملگر نسبی نشان داد که مدلهای WoE و EBF بهترتیب دارای مقدار AUC 89/0 و 79/0 هستند؛ بنابراین مدل WoE نسبت به EBF دارای بیشترین مقدار AUC بوده و بهترین مدل برای پیشبینی مکانی خطر زمینلغزش در منطقۀ پژوهش است. افزونبر آن، نتایج نشان داد که الگوریتمهای پیشرفتۀ دادهکاوی بنا به ساختار خود از دقت کافی در پیشبینی مکانی زمینلغزش در منطقۀ پژوهش برخوردارند. | ||
کلیدواژهها | ||
الگوریتمهای پیشرفتۀ دادهکاوی؛ تابع شواهد قطعی؛ جادۀ سنندج-کامیاران؛ زمینلغزش؛ مدل شواهد وزنی | ||
عنوان مقاله [English] | ||
Evaluation and Spatial Prediction of Landslide Hazard in Mountainous Road of Sanandaj-Kamyaran using Advanced Data Mining Algorithms | ||
نویسندگان [English] | ||
Saleh Mirzania1؛ Himan Shahabi2 | ||
1Master of Environmental Hazards, University of Kurdistan | ||
2Assistant Professor, Department of Geomorphology, Faculty of Natural Resources Faculty, University of Kurdistan | ||
چکیده [English] | ||
Introduction Communication as one of the most important elements of modern civilization provides the background for economic and social development, and development in different regions. Road construction is one of the major causes of landslides in mountainous areas. Landslides are natural disasters that cause a lot of financial and life losses in the country, annually. Identifying high risk areas can reduce the damages and be effective on land development policies. In various studies, different factors and conditioning factors have been considered for the occurrence of landslides. On the other hand, landslide susceptibility mapping is the first and most important step in preventing and controlling of landslides. The roads of Kurdistan province are constantly witnessing mass movements including landslides and rock fall due to the mountainous and climatic conditions. These landslides causing tens of thousands of dollars of damage each year. The Sanandaj-Kamyaran main road is also one of the areas with high hazardous potential due to its location, and variety of environmental variables including climatic, tectonic, lithology and land cover conditions. Hence, spatial prediction of mass movements and landslide susceptibility mapping on the Sanandaj-Kamyaran mountainous road using advanced data mining algorithms such as weight of evidence (WOE) and evidential belief function (EBF) is essential. Materials and methods In this study according to previous studies and regional conditions, fourteen conditioning factors including slope, aspect, elevation, distance to river, river density, distance to fault, distance to road, land use, soil type, curvature, lithology, normalized difference vegetation index (NDVI), stream power index (SPI), and topographic wetness index (TWI) were used to landslide hazard potential map. Also, two developed data mining models including EBF and WOE were used to extraction of landslide susceptibility mapping. The EBF model is based on the Dempster–Shafer Theory of Evidence. Therefore, to implement the EBF model, the layers of the conditioning factors were transformed into evidential data layers and then integrated using knowledge of the spatial relationships between the landslide occurrences and factors influencing the land sliding in order to generate a predictive landslide susceptibility Index (LSI) map. One of the advantages of this model is that both the predicted landslide and flooding zone outputs exist within the same degree of uncertainty. The EBF model is composed of four functions, namely: Bel (degree of Belief), Dis (degree of Disbelief), Unc (degree of Uncertainty) and Pls (degree of Plausibility). Four maps of Bel, Dis, Pls, and Unc were used for the assessment of the fourteen factors influencing landslide. The Weights of Evidence (WOE) is a statistics method can uses in probability condition to assess parameters which are influence on one or more other phenomena. It establishes a relationship between factors and it uses intersected with among variable. Weight of evidence origin was of Bayes’ theorem that predicts variable from combine parameter maps. Finally, the receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used for validation of the two achieved landslide susceptibility map. Discus and Results The altitudes of the study area are minimum 1293 m and maximum 2288 m. The mapping of altitude levels of the study area and the use of WOE as well as the use of EBF model showed that the altitude of 1300-1450 m had the greatest impact on landslide occurrence in the study area. Investigation of aspect map based on WOE showed that the highest and the lowest frequency of landslide occurred was in the northwest and southwest direction, respectively, but according to the EBF model, the highest and the lowest frequency of landslide occurred was in the northwest and flat directions, respectively. Furthermore, evaluation of river density map in WOE and EBF models showed that medium and low river densities had the most impact on landslide occurrence, respectively, but high and very high river density had least effect on landslide occurrence, respectively. Investigation of the information layers in the WOE model showed that TWI with very low class, SPI with very low class, and distance to fault in very high class had the most impact on landslide occurrence, but in EBF model, TWI with middle class and very high class had the highest and least impact on landslide occurrence, respectively. Also, SPI at very low class and distance to fault at very high class had the greatest impact on landslide occurrence. According to the evaluation criterion used in this study (ROC) and validation data, the WOE function model performed better than the EBF model. Conclusion The findings of this research showed that the advanced data mining algorithms based on their structure have sufficient accuracy in spatial predicting of landslide in the study area. In general, it can be said that a rigorous landslide susceptibility map can help managers especially in natural hazard management section in identifying landslide sensitive areas for disaster management. The field survey is a difficult approach for the preparation of the landslide inventory map, especially for elevation which often affects landslide distribution. Landslides that occur in high altitude areas are often lost, because of the difficulty of accurate field surveys. Thus, it is recommended that identification of landslide locations should be based on high-resolution satellite images. | ||
کلیدواژهها [English] | ||
Landslides, Advanced data mining algorithms, Weights of evidence model, evidential belief function, Sanandaj-Kamyaran road | ||
مراجع | ||
[1]. رجایی، عبدالحمید (1373). کاربرد ژئومورفولوژی در آمایش سرزمین و مدیریت محیط، تهران: قومس. [2]. روستایی، شهرام؛ مختاری، داوود؛ و خدایی، فاطمه (1394). «کاربرد روش رگرسیون لجستیک در پهنهبندی خطر وقوع ناپایداریهای دامنهای در جادههای کوهستانی (محدودۀ مورد مطالعه: تنگۀ دره دیز)»، مخاطرات محیط طبیعی، دورۀ 4، ش 6، ص 103-89. [3]. ریاضی، برهان؛ کرمی، نعمتالله؛ کرمی، محمود؛ و هوشیاردل، بنفشه (1385). «بررسی اثرات حملونقل جادهای و ریلی بر حیات وحش جانوری و ارائۀ رهنمودهای لازم»، علوم و تکنولوژی محیط زیست، دورۀ 8، ش 3، ص 60-53. [4]. زندی، دانش؛ شهابی، هیمن؛ چپی، کامران؛ و شیرزادی، عطالله (1397). پیشبینی مکانی حرکتهای دامنهای جادهای با استفاده از الگوریتمهای پیشرفته دادهکاوی (گردنۀ صلواتآباد سنندج). پایاننامۀ کارشناسی ارشد مخاطرات طبیعی، دانشگاه کردستان. [5]. شادفر، صمد؛ نوروزی، علیاکبر؛ قدوسی، جمال؛ و غیومیان، جعفر (1384). «پهنهبندی خطر زمینلغزش در حوزۀ لاکتراشان»، حفاظت خاک و آب، دورۀ 1، ش 3، ص 10-1. [6]. شیرزادی، عطالله؛ سلیمانی، کریم؛ حبیبنژاد روشن، محمود؛ و چپی، کامران (1396). «معرفی یک مدل جدید ترکیبی الگوریتم مبنا بهمنظور پیشبینی حاسیت زمینلغزشهای سطحی اطراف شهر بیجار»، جغرافیا و توسعه، دورۀ 14، ش 46، ص 246-225. [7]. شیرزادی، عطالله؛ سلیمانی، کریم؛ حبیبنژاد روشن، محمود؛ کاویان، علی؛ و قاسمیان، بهاره (1394). «مقایسۀ روشهای رگرسیون لجستیک، نسبت فراوانی و تحلیل سلسلهمراتبی در تهیۀ نقشۀ حساسیت ریزش سنگ (مطالعۀ موردی: استان کردستان، گردنۀ صلواتآباد)»، پژوهشنامۀ مدیریت حوزۀ آبخیز، دورۀ 12، ش 5، ص 203-193. [8]. صفاری، امیر؛ و اخدر، آرش (1391). «مقایسۀ مدل نسبت فراوانی و توابع عضویت فازی در پهنهبندی خطر زمینلغزش (مطالعۀ موردی: جادۀ ارتباطی مریوان-سنندج)»، جغرافیا و مخاطرات محیطی، دوره 1، ش 4، ص 96-79. [9]. عرب عامری، علیرضا؛ شیرانی، کورش؛ و رضایی، خلیل (1396). «ارزیابی مقایسهای روشهای احتمالاتی وزن واقعه و نسبت فراوانی در پهنهبندی خطر زمینلغزش (مطالعۀ موردی: حوزۀ آبخیز ونک، اصفهان)»، پژوهشنامۀ مدیریت حوزۀ آبخیز، دورۀ 8، ش 15، ص 163-147. [10]. فلاحتبار، نصراله (1379)، «تأثیر برخی عوامل جغرافیایی بر راههای کشور»، پژوهشهای جغرافیایی، دورۀ 32، ش 38، ص 55-47. [11]. قاسمیان، بهاره؛ عابدینی، موسی؛ روستایی، شهرام؛ و شیرزادی، عطالله (1396). «ارزیابی حساسیت زمینلغزش با استفاده از الگوریتم ماشین پشتیبان بردار (مطالعۀ موردی: شهرستان کامیاران، استان کردستان)»، پژوهشهای ژئومورفولوژی کمّی، دورۀ 6، ش 3، ص 36-15. [12]. متولی، صدرالدین؛ حسینزاده، محمد؛ اسماعیلی، رضا؛ و درفشی، خهبات (1394). «ارزیابی دقت روشهای رگرسیون چندمتغیره (MR)، رگرسیون لجستیک (LR)، تحلیل سلسلهمراتبی (AHP) و منطق فازی (FL) در پهنهبندی خطر زمینلغزش حوضۀ آبخیز طالقان»، پژوهشهای ژئومورفولوژی کمّی، دورۀ 1، ش 13، ص 20-1. [13]. موسوی، معصومه؛ و عابدینی، موسی (1392). «پهنهبندی خطر وقوع زمینلغزش در حوضههای آبخیز شهری با استفاده از مدل (WLC) مطالعۀ موردی: حوضۀ آبخیز شهر ایذه خوزستان»، دومین کنفرانس بینالمللی مخاطرات محیطی، تهران، دانشگاه خوارزمی. [14]. Bonham-Carter, G.F. (1994). Geographic Information Systems for Geoscientists: Modeling with GIS. Pergamon Press, Canada, p: 398. [15]. Carrara, A.; G.B. Crosta.; & P. Frattini. (2003). “Geomorphologic and historical data in assessing andslide hazard”, Earth Surface Processes and Landforms, 28, pp: 1125-1142. [16]. Chen, W.; Hong, H.; Panahi, M.; Shahabi, H.; Wang, Y.; Shirzadi, A.; & Rezaie, F. (2019). “Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO)”, Applied Sciences, 9(18), p: 3755. [17]. Chen, W.; Shahabi, H.; Zhang, S.; Khosravi, K.; Shirzadi, A.; Chapi, K.; Pham, B.; Zhang, T.; Zhang, L.; Chai, H.; & Ma, J. (2018). “Landslide Susceptibility Modeling Based on GIS and Novel Bagging-Based Kernel Logistic Regression”, Applied Sciences, 8(12), p: 2540. [18]. Chen, W.; Xie, X.; Peng, J.; Wang, J.; Duan, Z.; & Hong, H. (2017). “GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models”, Geomatics, Natural Hazards and Risk, pp: 1-24. [19]. Chen, W.; Zhang, S.; Li, R.; Shahabi, H. (2018). “Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling”, Science of the Total Environment, 644, pp: 1006-1018. [20]. Constantin, M.; Bednarik, M.; Jurchescu. M.C.; & Vlaicu. M. (2011). “Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania)”, Environment. Earth Sci, 63, pp: 397-406. [21]. Crosby, D. A. (2006). The effect of DEM resolution on the computation of hydrologically significant topographic attributes. M.S. Thesis Arts, Department of Geography, College of Arts and Sciences, University of South Florida. [22]. Devkota, C. K.; Regmi, D. A.; Pourghasemi, R. H.; Yohida, K.; Pradham, B.; Ryu, C. L.; Dhital, R. M.; & Althuwaynee, F. O. (2012). “Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya”, Natural Hazards, 65(1), pp: 135-165. [23]. Goetz, J. N.; Brenning, A.; Petschko, H.; & Leopold, P. (2015). “Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling”, Computers & Geosciences, 81, pp: 1-11. [24]. Huang, F.; Chen, L.; Yin, K.; Huang, J.; & Gui, L. (2018). “Object-oriented change detection and damage assessment using high-resolution remote sensing images, Tangjiao Landslide, Three Gorges Reservoir, China”, Environmental Earth Sciences, 77, p: 183. [25]. Hunger, O.; Evans, S.J.; Bovis, M.U.; & Hutchinson, J.N. (2001). “A review of the classification of landslides of the flow type Environ”, Environmental and Engineering Geoscience, 7, pp: 221-238 [26]. Jebur, M.; Pradhan, B.; & Tehrany, M. (2014). “Manifestation of LiDAR-derived parameters in the spatial potential in the area of Pohang City, Korea”, Journal of Hydrology, 399. pp: 158-172. [27]. Kavzoglu, T.; Kutlug Sahin, E; & Colkesen, I. (2015). “An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district”, Natural Hazards, 76 (1), pp: 471 - 496. [28]. Kornejady, A.; Ownegh, M.; & Bahremand, A. (2017). “Landslide susceptibility assessment using maximum entropy model with two different data sampling methods”, Catena, 152, pp:144-162. [29]. Nefeslioglu, H.A.; Duman, T.Y.; & Durmaz. S. (2008). “Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Easten Black Sea Region of Turkey)”, Geomorphology, 94, pp: 401-418. [30]. Oh, H. J.; Kadavi, P. R.; Lee, C. W.; & Lee, S. (2018). “Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models. Geomatics”, Natural Hazards and Risk, 9(1), pp: 1053-1070. [31]. Pontius, R.G.; & L.C. Schneider. (2001). “Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture”, Ecosystems and Environment, 85(1), pp: 239- 248. [32]. Pradhan, B. (2012). “Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster-Shafer and weights-of-evidence models”, Journal of Asian Earth Sciences, 61, pp: 221-236. [33]. Qing, F.; Wie, C.; & Haeyuan, H. (2016). “Application of frequency ratio weights of evidence and evidential belif function model in land slide susceptibility mapping”, Geocarto International, (6)32, pp: 619 – 639. [34]. Regmi, A.D.; Devkota, K.C.; Yoshida, K.; Pradhan, B.; Pourghasemi, H.R.; Kumamoto, T. & Akgun. A. (2014). “Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya”, Arabian Journal of Geosciences, 7, pp: 725-742. [35]. Roodposhti, M. S.; Safarrad, T.; & Shahabi, H. (2017). “Drought sensitivity mapping using two one-class support vector machine algorithms”, Atmospheric Research, 193, pp: 73-82. [36]. Shahabi, H.; Khezri, S.; Ahmad, B. B.; & Hashim, M. (2014). “Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models”, Catena, 115,pp: 55-70. [37]. Shirzadi, A.; Bui, D. T.; Pham, B. T.; Solaimani, K.; Chapi, K.; Kavian, A.; & Revhaug, I. (2017). “Shallow landslide susceptibility assessment using a novel hybrid intelligence approach”, Environmental Earth Sciences, 76(2), pp: 60.-71. [38]. Song, K.Y.; Oh, J.; Choi, J.; Park, I.; Lee, C.; & Lee, S. (2012). “Prediction of landslides using ASTER imagery and data mining models”, Advances in Space Research, 49, pp: 978-993. [39]. Yilmaz, C.; Topal, T.; & Suzen, M.L. (2012). “GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey)”, Environmental Earth Science, 65, pp: 2161- 2178. [40]. Zhang, K.; Wu, X.; Niu, R.; Yang, K.; & Zhao, L. (2017). “The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China”, Environmental Earth Sciences, 76(11), pp: 405-414. | ||
آمار تعداد مشاهده مقاله: 614 تعداد دریافت فایل اصل مقاله: 510 |