Feng R., Yan X., Hu X., Zhang Y., Wu J., Yan Z. The effect of co-feeding ethanol on a methanol to propylene (MTP) reaction over a commercial MTP catalyst. Appl. Catal. A., 599: 117429 (2020).
- Rami M. D., Taghizadeh M., Akhoundzadeh H. Synthesis and characterization of nano-sized hierarchical porous AuSAPO-34 catalyst for MTO reaction: Special insight on the influence of TX-100 as a cheap and green surfactant. Microporous Mesoporous Mater. 285(1):259-270 (2019).
- Shang Y., Wang W., Zhai Y., Song Y., Zhao X., Ma T., Wei J., Gong Y. Seed-fused ZSM-5 nanosheet as a superior MTP catalyst: synergy of micro/mesopore and inter/external acidity. Microporous Mesoporous Mater. 276 (1):173-82 (2019).
- Hu H., Cao F., Ying W., Sun Q., Fang D. Study of coke behaviour of catalyst during methanol-to-olefins process based on a special TGA reactor. Chem. Eng. J. 160(2):770-8 (2010).
- Bjørgen M., Svelle S., Joensen F., Nerlov J., Kolboe S., Bonino F., et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species. J. Catal. 249(2):195-207(2007).
- Hu Z., Zhang H., Wang L., Zhang H., Zhang Y., Xu H., et al. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal Sci Technol. 4 (9):2891-5(2014).
- Sun X., Mueller S., Liu Y., Shi H., Haller G.L., Sanchez-Sanchez M., et al. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. J. Catal. 317:185-97(2014).
- Li Z., Martínez-Triguero J., Yu J., Corma A. Conversion of methanol to olefins: Stabilization of nanosized SAPO-34 by hydrothermal treatment. J. Catal. 329:379-88 (2015).
- Dubois D.R., Obrzut D.L., Liu J., Thundimadathil J., Adekkanattu P.M., Guin J.A., et al. Conversion of methanol to olefins over cobalt-, manganese-and nickel-incorporated SAPO-34 molecular sieves. Fuel Process. Technol. 83(1-3):203-18(2003).
- Wu L., Hensen E.J. Comparison of mesoporous SSZ-13 and SAPO-34 zeolite catalysts for the methanol-to-olefins reaction. Catal. Today. 235:160-8(2014).
11 . Sun Q., Wang N., Xi D., Yang M., Yu J. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem Commun. 50(49):6502-5(2014).
- Xi D., Sun Q., Xu J., Cho M., Cho H.S., Asahina S., et al. In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity. J. Mater. Chem. A. 2 (42):17994-8004 (2014).
13.Ghalbi-Ahangari M., Rashidi-Ranjbar P., Rashidi A., Teymuri M. Synthesis of hierarchical SAPO-34 and its enhanced catalytic performance in methanol to propylene conversion process. Pet. Sci. Technol. 37(22):2231-7(2019).
- Ghalbi-Ahangari M., Ranjbar P.R., Rashidi A., Teymuri M. The high selectivity of Ce hierarchical SAPO-34 nanocatalyst for the methanol to propylene conversion process. React Kinet. Mech. Catal. 122(2):1265-79 (2017).
- Huang F., Cao J., Wang L., Wang X., Liu F. Enhanced catalytic behavior for methanol to lower olefins over SAPO-34 composited with ZrO2. Chem. Eng. J.; 380:122626(2020).
- Yuan X., Li H., Ye M., Liu Z. Comparative study of MTO kinetics over SAPO-34 catalyst in fixed and fluidized bed reactors. Chem. Eng. J. 329 (1):35-44(2017).
- Lesthaeghe D., Delcour G., Van-Speybroeck V., Marin G.B., Waroquier M. Theoretical study on the alteration of fundamental zeolite properties by methylene functionalization. Microporous. Mesoporous. Mater, 96 (1-3):350-356 (2006).
- Hadi N., Niaei A., Nabavi S.R., Farzi A. Kinetic Study of Methanol to Propylene Processon High Silica H-ZSM5 Catalyst. IRAN. J. CHEM. CHEM. ENG. 4(10): 16-27 (2013).
- Olsbye U., Bjørgen M., Svelle S., K. Lillerud P., Kolboe S. Mechanistic insight into the methanol-to-hydrocarbons reaction. Catal. Today, 106 (1-4): 108-111 (2005).
- Gayubo A.G., Aguayo A.T., Alonso A., Bilbao J. Kinetic modeling of the methanol-to-olefins process on a silicoaluminophosphate (SAPO-18) catalyst by considering deactivation and the formation of individual olefins. Ind. Eng. Chem. Res, 46(7):1981-9(2007).
- Aguayo A.T., Mier D., Gayubo A.G., Gamero M., Bilbao J. Kinetics of methanol transformation into hydrocarbons on a HZSM-5 zeolite catalyst at high temperature (400−550 C). Ind. Eng. Chem. Res, 49(24):12371-8(2010).
- Najafabadi A.T., Fatemi S., Sohrabi M. Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. J. Ind. Eng. Chem, 18 (1), 29-37 (2012).
- Treacy M.M.J., Higgins J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 4th Structure Commission of the International Zeolite Association. Amsterdam, Netherlands. p 380, (2001).
24. Shamanaeva I., V. Parkhomchuk E. Influence of the Precursor Preparation Procedure on the Physicochemical Properties of Silicoaluminophosphate SAPO-11. Pet.Chem. 59(8): 854-859 (2019).
- Li J., Li Z., Han D., Wu J. Facile synthesis of SAPO-34 with small crystal size for conversion of methanol to olefins. Powder Technol, 262: 177-182 (2014).
- Gayubo A.G., guayo A. T., Sánchez A.E. Kinetic Modeling of Methanol Transformation into Olefins on a SAPO-34 Catalyst. Ind. Eng. Chem. Res, 39 (2): 292-301 (2000).
- Bos A.N.R., Tromp P.J.J., Akse H.N. Conversion of Methanol to Lower Olefins. Kinetic Modeling, Reactor Simulation, and Selection. Ind. Eng. Chem. Res, 34(11): 3808-3818 (1995).
- Park T.Y., Froment G.F. Kinetic modeling of the methanol to olefins process. 1. Model
formulation. Ind. Eng. Chem. Res.; 40 (20):4172-86 (2001).
- Park T.Y., Froment G.F. Kinetic Modeling of the Methanol to Olefins Process. 2. Experimental Results, Model Discrimination, and Parameter Estimation Ind. Eng. Chem. Res, 40: 4187-4197 (2001).
- Abraha M.G., Wu X., Anthony R.G. Effects of particle size and modified SAPO-34 on conversion of methanol to light olefins and dimethyl ether. Stud. Surf. Sci. Catal. 133: Elsevier; 2 11 – 218(2001).
- Daneshpayeh M., Khodadadi A., Mostoufi N., Mortazavi Y., Sotudeh-Gharebagh R., Talebizadeh A. Kinetic modeling of oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst. Fuel. Process. Technol. 90(3):403-410 (2009).
- Alwahabi S.M., Froment G.F. Single event kinetic modeling of the methanol-to-olefins process on SAPO-34. Ind. Eng. Chem. Res. 43(17):5098-111(2004).
- Maeder M., Neuhold Y.M., Puxty G. Application of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanisms. Chemom. Intell. Lab. Syst., Lab. Inf. Manage. 70 (2): 193-203 (2004).
- Lucasius C.B., Kateman G. Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization. Chemom. Intell. Lab. Syst. 25: 99-145 (1994).
- Maeder M. , Neuhold Y. M., Puxty G., King P. Analysis of reactions in aqueous solution at non-constant pH: no more buffers?. Phys. Chem. Chem. Phys. 5: 2836-2841 (2003)
- Evans M., Polanyi M. Inertia and driving force of chemical reactions. Trans. Faraday Soc, 34: 11-24 (1938).
|