![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,699,851 |
تعداد دریافت فایل اصل مقاله | 98,933,907 |
ارزیابی شاخصهای کمی ماهوارهای در تعیین سطح پهنه های آبی با استفاده از سنجنده های ماهواره ای (مطالعه موردی: تالاب زریبار استان کردستان) | ||
مجله اکوهیدرولوژی | ||
مقاله 20، دوره 7، شماره 2، تیر 1399، صفحه 539-550 اصل مقاله (1.03 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2020.295355.1267 | ||
نویسندگان | ||
فاطمه جوادی* 1؛ سحر رضایان2؛ سید علی جوزی3 | ||
1کارشناسی ارشد رشتۀ مهندسی منابع طبیعی، ارزیابی و آمایش سرزمین، کارشناس مؤسسۀ تحقیقات آب، پژوهشکدۀ مطالعات و تحقیقات منابع آب، تهران | ||
2دانشیار گروه محیط زیست، دانشکدۀ علوم پایه، دانشگاه آزاد اسلامی واحد شاهرود | ||
3استاد گروه محیط زیست، دانشکدۀ فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران شمال | ||
چکیده | ||
بررسی آبهای سطحی و تعیین گسترش مکانی آنها اهمیت زیادی برای درک چرخۀ هیدرولوژی و مدیریت منابع آب دارد. در حال حاضر، سنجش از دور به رویکردی متداول در پایش منابع آب سطحی تبدیل شده است. هدف اصلی تحقیق حاضر، تعیین بهترین شاخص ماهوارهای برای استخراج مساحت تالاب زریبار با استفاده از تصاویر ماهوارهای Landsat5,7,8 است. مساحت تالاب با استفاده از روش طبقهبندی نظارتشده حداکثر احتمال بین سالهای 1385 تا 1395 محاسبه و این روش به عنوان روش مبنا در تعیین بهترین شاخص در نظر گرفته شده است. شاخصهای NDVI، NDWI، MNDWI، SWI، AWEI و WRI به عنوان متداولترین شاخصها در تعیین پهنههای آبی مقایسه شدهاند که مقادیر هریک از شاخصها در تصاویر گرفتهشده محاسبه شده و مقادیر آستانۀ شاخصها در هر تصویر تعیین و در نهایت، با استفاده از روش مبنا صحتسنجی شده است. در این میان، شاخصهای MNDWI و AWEIو SWI در مقایسه با روش مبنا با مقادیر همبستگی بهترتیب معادل 76/0، 76/0 و 74/0 و RMSE بهترتیب برای هر شاخص معادل 80/108، 30/111 و 80/113هکتار و همچنین مقادیر خطای MAE معادل 63/84، 28/94 و 30/87 هکتار، بهترین شاخصها در تعیین مساحت تالاب هستند. استفاده از شاخصهای تعیینشده با توجه به سهولت و سرعت انجام محاسبات، امکان ایجاد سری زمانی تغییرات مساحت تالاب به منظور مدیریت بهینۀ این پهنۀ آبی را فراهم میآورد. | ||
کلیدواژهها | ||
پهنۀ آبی؛ تالاب زریبار؛ روش طبقهبندی نظارتشده؛ شاخص ماهوارهای؛ ماهوارۀ لندست | ||
عنوان مقاله [English] | ||
Evaluating Satellite Indicators in Determining the Level of Aquatic Areas Using Satellite Sensors (Case Study: Zaribar Wetland, Kurdistan Province) | ||
نویسندگان [English] | ||
Fatemeh Javadi1؛ Sahar Rezayan2؛ Seyed Ali Jozi3 | ||
1M.Sc. of Environmental Sciences, Research Fellow at Water Research Institute,Tehran, Iran | ||
2Associated Professor, Department of Environment, Islamic Azad University, Shahrood Branch, Iran | ||
3Professor, Department of Environment, Islamic Azad University, North Tehran Branch, Iran | ||
چکیده [English] | ||
tension are contributing factors for understanding the hydrological cycle and water resources management. Recently, remote sensing technique has become a common approach for monitoring surface water resources. The main objective of this study is the determination of the suitable satellite indices for extracting Zaribar wetland area using Landsat 5.7.8 satellite images. The area of the wetland is calculated by using the supervised classification method (maximum likelihood) between 2005 and 2016, and this method is considered as the basis for determining the best indices. NDVI, NDWI, MNDWI, SWI, AWEI, and WRI were compared with each other as the most common indices in determining water bodies. The values of each index in every image were extracted and the threshold values for each image were determined and finally verified by using the base method. Comparison with reference method (supervised classification) revealed that, MNDWI, AWEI, and SWI indices with correlation values of 0/76, 0/76, and 0/74, and RMSE value of 108/80, 111/30, and 113/80 hectares, and MAE error values of 85/63, 94/28 and 87/30 hectares, respectively are the best indicators for determining water body area. Considering the easiness and rate of calculation, it is more likely that using these indicators would help us to create a time series of wetland area changes for efficient management of this water body. | ||
کلیدواژهها [English] | ||
Water body, Supervised Classification Method, Landsat Satellite, Satellite Index, Zaribar Wetland | ||
مراجع | ||
[1]. Du Z, Li W, Zhou D, Tian L, Ling F, Wang H, Gui Y, Sun B. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote sensing letters. 2014 Jul 3;5(7):672-81. [2]. Du Y, Zhang Y, Ling F, Wang Q, Li W, Li X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing. 2016 Apr;8(4):354. [3]. Xu H. Evaluation of two absolute radiometric normalization algorithms for pre-processing of Landsat imagery. Journal of China University of Geosciences. 2006 Jun 1;17(2):146-57. [4]. Feyisa GL, Meilby H, Fensholt R, Proud SR. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment. 2014 Jan 1;140:23-35. [5]. Haibo Y, Zongmin W, Hongling Z, Yu G. Water body extraction methods study based on RS and GIS. Procedia Environmental Sciences. 2011 Jan 1;10:2619-24. [6]. Gautam VK, Gaurav PK, Murugan P, Annadurai M. Assessment of surface water Dynamicsin Bangalore using WRI, NDWI, MNDWI, supervised classification and KT transformation. Aquatic Procedia. 2015 Jan 1;4:739-46. [7]. Zhou Y, Dong J, Xiao X, Xiao T, Yang Z, Zhao G, Zou Z, Qin Y. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water. 2017 Apr;9(4):256. [8]. Ashtekar AS, Mohammed-Aslam MA, Moosvi AR. Utility of Normalized Difference Water Index and GIS for Mapping Surface Water Dynamics in Sub-Upper Krishna Basin. Journal of the Indian Society of Remote Sensing. 2019 Aug 1;47(8):1431-42. [9]. Gomshadzaee M. Determintation of water bodies using satelite images and applying spectural indicators. 2nd national conference of water crisis in iran and middle east. 2015 [persian]. [10]. Khosravian m. Monitoring Parishan Lake’s Water body Changes using Remote sensing indicators, journal of Hydrogeomorphology. 2016 (13): 99-120 [Persian]. [11]. Atlas of Water Resources, Iran Water Resources Management Company.2011 [persian]. [12]. Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation, 2014. [13]. McFeeters SK. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing. 1996 May 1;17(7):1425-32. [14]. Bhagat VS, Sonawane KR. Use of Landsat ETM+ data for delineation of water bodies in hilly zones. Journal of Hydroinformatics. 2011 Oct;13(4):661-71. [15]. Li W, Du Z, Ling F, Zhou D, Wang H, Gui Y, Sun B, Zhang X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing. 2013 Nov;5(11):5530-49. [16]. Du Y, Teillet PM, Cihlar J. Radiometric normalization of multi-temporal high-resolution satellite images with quality control for land cover change detection. Remote sensing of Environment. 2002 Sep 1;82(1):123-34. [17]. Chander G, Markham BL, Helder DL. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment. 2009 May 15;113(5):893-903. [18]. Nath RK, Deb SK. Water-body area extraction from high resolution satellite images-an introduction, review, and comparison. International Journal of Image Processing (IJIP). 2010 Jan;3(6):265-384. | ||
آمار تعداد مشاهده مقاله: 800 تعداد دریافت فایل اصل مقاله: 562 |