
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,220,636 |
تعداد دریافت فایل اصل مقاله | 102,049,455 |
An Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Journal of Sciences, Islamic Republic of Iran | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مقاله 6، دوره 31، شماره 3، آذر 2020، صفحه 259-275 اصل مقاله (2.06 M) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نوع مقاله: Original Paper | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
شناسه دیجیتال (DOI): 10.22059/jsciences.2020.297045.1007495 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نویسندگان | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
seyed hossain ebrahimi* 1؛ Ahmad afshari2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1industry engineering ,shomal university,amol,iran | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2industrial engineering,MehrAlborz university,tehran,iran | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
چکیده | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipeline booster station includes the compressor's input and output pressures, input and output temperatures and also the flow rate passing from the compressors. Different values of those parameters related to every point of operational conditions will exactly affect on the compressor poly-tropic efficiency and their driver fuel consumption. Although, calculating of the poly tropic efficiency and fuel consumption using the existing thermodynamic relations, would need to apply rather awkward equations for each operating point. In this research, a feed forward perceptron artificial neural network is presented to predict the output operational conditions. The network would be trained at least in two scenarios applying by practical data in the neuro solution software version.5 using the Levenberg-Marquadt algorithm and the optimum model is experimentally selected according to R2, MSE and NMSE. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
کلیدواژهها | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Centrifugal compressor؛ Artificial neural network؛ Ridge regression؛ Performance prediction؛ Pipeline gas booster station | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مراجع | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4.Ghorbanian K. and Gholamrezaei M., An artificial neural network approach to compressor performance prediction. Applied Energy. JAE, 86:1210–1221(2009).
6.Yu Y., Chen L., Sun F. and Wu C., Neural network based analysis and prediction of a compressor’s characteristic performance map. Applied Energy. JAE, 84(1):48–55(2007).
7.Torabian. and Karimian., Prediction of compressor’s map using the artificial neural network(Into Persian). First conference of developing of civil engineering ,architecture and mechanic, iran. DCEAEM01, 1: 111-117(2014).
8.Sanaye S., Dehghandokht M., Mohammadbeigi H. and Bahrami S., Modeling of rotary vane compressor applying artificial neural network. International Journal of Refrigration. Int. J. Refrig, 34: 764-772(2011).
9.Soo-Yong C., Kook-Young A., Young-Duk L. and Young-Cheol K., Optimal Design of a Centrifugal Compressor Impeller Using Evolutionary Algorithms.Mathematical Problems in Engineering. Math Probl Eng, 2012:1-22 (2012).
10.Shaojun L. and Feng L., Prediction of Cracking Gas Compressor Performance and Its Application in Process Optimization. Process systems engineering. Chinese Journal of Chemical Engineering. CJCE, 20:1089-1093(2012).
12.Chen P., Chang H. and Armada H., A Study of Using Artificial Neural Network in a Non-linear Centrifugal Compressor System. International Journal on Computer Science and Engineering. IJCSE, 4:1890-1896 (2012).
13.Yang L., Zhao L., Zhang, C. and Gua B. ,Loss-efficiency model of single and variable-speed compressors using neural networks.International Journal of Refrigretaion. Int.J.Refrig, 32:1423-1432 (2009).
17.Walker E., Ridge Regression as an Alternative to Ordinary Least Squares: Improving Prediction Accuracy and the Interpretation of Beta Weights., Association for Institutional Research Enhancing knowledge. Expanding networks. Professional Development, Informational Resources & Networking. AIR, 92:1-12 (2004).
20.Walker E., Detection of Collinearity–Influential observations. Journal of Communications in Statistics, Theory and Methods. JCS-TM , 18:1675–1690 (1989).
21.Vinod H. and Ullah A., Recent Advances in Regression Models. International Journal of Forecasting. IJF, 2:246-361 (1981).
22.Hoerl A. and Kennard R., Ridge Regression: Biased Estimation for non orthogonal Problems. Journal of Statistics for the Physical, Chemical, and Engineering Sciences. Technometrics, 42:80-86 (2000).
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
آمار تعداد مشاهده مقاله: 983 تعداد دریافت فایل اصل مقاله: 652 |