تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,033 |
تعداد مشاهده مقاله | 125,502,754 |
تعداد دریافت فایل اصل مقاله | 98,766,916 |
ابرهای کومهای از دیدگاه سطوح زبر | ||
فیزیک زمین و فضا | ||
مقاله 11، دوره 47، شماره 1، اردیبهشت 1400، صفحه 175-186 اصل مقاله (862.94 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2021.311393.1007254 | ||
نویسندگان | ||
جعفر چراغعلیزاده1؛ مرتضی نطاق نجفی* 2؛ احد صابر تازهکند3 | ||
1دانشجوی دکتری، گروه فیزیک، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
2دانشیار، گروه فیزیک، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
3استادیار، گروه فیزیک، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
چکیده | ||
ابرها با پراکنده کردن تابش دریافتی از خورشید نقش زیادی را در توازن انرژی زمین ایفا میکنند. مـا دراین مقاله نقشهی دوبعدی شدتنور مرئی رسیده از ابرهای کومهای (Cumulus) که توسط دوربین عکاسی به ثبت رسیده است را مورد بررسی قرار میدهیم. با بهکارگیری تکنیکهای مربوط به سطوح زبر، خواص آماری لگاریتم این شدت (بهعنوان یک میدان افتوخیزدار دوبعدی) را مطالعه میکنیم. تخمینهای عددی ما نشان میدهد که نمای زبری محلی و سرتاسری بهترتیب و هستند. همچنین نشان میدهیم که تابع توزیع لگاریتم شدت و همچنین تابع توزیع انحنای موضعی مربوطه (بهازای مقیاسهای مختلف) گاوسی نیستند و در نتیجه سطح دوبعدی در نظر گرفته شده غیرگاوسی است. با دانش به اینکه پستیوبلندی ابرها و در حالت کلی آمار ارتفاع و ضخامت ابرها تأثیری مهم در پراکندگی و جذب تابش خورشید دارند، به بررسی ارتباط شدتنور رسیده از ابر و ضخامت آن میپردازیم. برای این منظور نور پراکنده شده از ابرهای کومهای را با استفاده از یک مدل درشت دانه شده پدیده شناختی بر پایه پراکندگی می شبیهسازی میکنیم. نتایج این شبیهسازی نشان میدهد که برای تابش عمودی و غیرعمودی، شدتنور رسیده از پایین ابر بهصورت نمایی با ارتفاع ستون ابر درست در بالای آن کاهش مییابد. در حوزه اعتبار نتایج این شبیهسازی، میتوان ادعا کرد که مسئله ضخامت ابرهای کومهای به سطح زبر غیرگاوسی خود متشابه نگاشت میشود. | ||
کلیدواژهها | ||
ابرهای کومهای؛ پراکندگی نور مرئی از سطح ابر؛ سطوح زبر خودمتشابه؛ برخال | ||
عنوان مقاله [English] | ||
Cumulus Clouds from the rough surface perspective | ||
نویسندگان [English] | ||
Jafar Cheraghalizadeh1؛ Morteza Nattagh Najafi2؛ Ahad Saber Tazehkand3 | ||
1Ph.D. Student, Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran | ||
2Associate Professor, Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran | ||
3Assistant Professor, Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran | ||
چکیده [English] | ||
Although it is well-known the clouds show a fractal geometry for a long time, their detailed analysis is missing in the literature yet. Within scattering of the received radiation from the sun, clouds play a very important role in the energy budget in the earth atmosphere. It was shown that the surface fluctuations and generally the statistics of the clouds has a very important impact on the scattering and the absorption of the radiation of the sun. In this paper we first study the relation between the visible light intensity and the width of the cumulus clouds. To this end, we find that the received intensity is , where , and To this end we supposed that the transmitted intensity of light from a column of cloud is proportional to where (summation of the absorbed and the scattered contributions). Using this relation, we find a one to one relation between the cloud width and the intensity of the received visible light in low intensity regime. By calculating the Mie scattering cross sections for the physical parameters of the clouds, we argue that this correspondence works for thin enough clouds, and also the width of the clouds is proportional to the logarithm of the intensity. The Mie cross section is shown to behave almost like for large enough s, where is the angle of radiation of sun with respect to earth’s surface, or equivalently the cloud’s base. This allows us to map the system to two-dimensional rough media. Then exploiting the rough surface techniques, we study the statistical properties of the clouds. We first study the roughness, defined for rough surfaces as . This study on the local and global roughness exponents (α_l and α_g respectively) show that the system is self-similar. We also consider the fractal properties of the clouds. Importantly by least square fitting of the roughness we show numerically that the exponents are and . We study also the other statistical observables and their distributions. By studying the distribution of the local curvature (for various scales) and the height variable we conclude that these functions, and consequently the system is not Gaussian. Especially the distribution of the height profile follows the Weibull distribution, defined via the relation for and zero otherwise. The reasoning of how this relation arises is out of scope of the present work, and is postponed to our future studies. The studies on the local curvature, defined via reveals the same behaviors and structure. All of these show that the problem of the width of cumulus clouds maps to a non-Gaussian self-similar rough surface. Also we show that the system is mono-fractal, which requires . Given these results, the authors think that the top of the clouds are anomalous random rough surfaces that affect the albedo of cloud fields. | ||
کلیدواژهها [English] | ||
Cumulus clouds, visible light scattering from the cloud surface, self-similar random surfaces, fractals | ||
مراجع | ||
Barabási, A. L. and Stanley, H. E., 1995, Fractal concepts in surface growth, Cambridge university press. Bouchaud, E., Lapasset, G. and Planes, J., 1990, Fractal dimension of fractured surfaces: a universal value?, EPL (Europhysics Letters), p. 73. Bouchaud, E., Lapasset, G., Planes, J. and Naveos, S., 1993, Statistics of branched fracture surfaces, physical Review B, 48(5), p. 29174. Bouthors, A., Neyret, F., Max, N., Bruneton, E. and Crassin, C., 2008, Interactive multiple anisotropic scattering in clouds, Proceedings of the 2008 symposium on Interactive 3D graphics and games, (p. 173-182). Cardoso, O., Gluckmann, B., Parcollet, O. and Tabeling, P., 1996, Dispersion in a quasi‐two‐dimensional‐turbulent flow: An experimental study, Physics of Fluids, 8(1), 209-214. Durbin, W, G., 1959, Droplet sampling in cumulus clouds, Tellus, 11.2, 202-215. Hentschel, H. G. E. and Procaccia, I., 1984, Relative diffusion in turbulent media: the fractal dimension of clouds, Physical Review A, 29(3), 1461. Kondev, J., Henley, C. L. and Salinas, D. G., 2000, Nonlinear measures for characterizing rough surface morphologies, Physical Review E, 61(1), p. 104. Levin, L. M., 1958, Functions to represent drop size distribution in clouds, the optical density of clouds. Izv. Akad. Nauk. SSSR, Ser. Geofiz 10 198-702. Lovejoy, S., 1982, Area-perimeter relation for rain and cloud areas, Science, 216(4542), 185-187. Lovejoy, S. and Schertzer, D., 1991, Multifractal analysis techniques and the rain and cloud fields from 10^−3 to 10^6 m, Non-Linear Variability in Geophysics, 111-144 Springer, Dordrecht. Max, N., 1995, Efficient light propagation for multiple anisotropic volume scattering, Photorealistic Rendering Techniques, p. 87-104. Springer, Berlin, Heidelberg. Nagel, K. and Raschke, E., 1992, Self-organizing criticality in cloud formation?, Physica A: Statistical Mechanics and its Applications, 182(4), 519-531. Najafi, M. N., Cheraghalizadeh, J., Luković, M., and Herrmann, H. J., 2020, Geometry-induced nonequilibrium phase transition in sandpiles, Physical Review E, 101(3), 032116. Pelletier, J. D., 1997, Kardar-Parisi-Zhang scaling of the height of the convective boundary layer and fractal structure of cumulus cloud fields, Physical review letters, 78(13), p. 2672. Plass, G. N. and Kattawar, G. W., 1971, Radiative transfer in water and ice clouds in the visible and infrared region, Applied Optics, 10(4), 738-748. Premože, S., Ashikhmin, M., Tessendorf, J., Ramamoorthi, R. and Nayar, S. 2004, Practical rendering of multiple scattering effects in participating media. Proceedings of the Fifteenth Eurographics conference on Rendering Techniques, p. 363-374. Ramshankar, R. and Gollub, J. P., 1991, Transport by capillary waves. Part II: Scalar dispersion and structure of the concentration field, Physics of Fluids A: Fluid Dynamics, 3(5), pp. 1344-1350. Rys, Franz, S. and Waldvogel, A., 1986, Fractal shape of hail clouds, Physical review letters, 56(7), p. 784. Sánchez, N., Alfaro, E. J. and Pérez, E., 2005, The fractal dimension of projected clouds. The Astrophysical Journal, 625(2), 849. Thekkekara, L. V. and Gu, M., 2017, Bioinspired fractal electrodes for solar energy storages, Scientific reports, 7, 45585. Twomey, S., Jacobowitz, H. and Howell, H. B., 1967, Light scattering by cloud layers. Journal of the Atmospheric Sciences, 24(1), 70-79. Wright, W. B., Budakian, R., Pine, D. J. and Putterman, S. J., 1997, Imaging of intermittency in ripple wave turbulence, Science, 278(5343), pp. 1609-1612. | ||
آمار تعداد مشاهده مقاله: 1,069 تعداد دریافت فایل اصل مقاله: 635 |