- Ramzannezhad A, Bahari A. Characteristics of Fe3O4, α-Fe2O3, and γ-Fe2O3 nanoparticles as suitable candidates in the field of nanomedicine. J Superconduct Novel Magnet. 2017;30:1.
- Adinaveen T, Judith Vijaya J, John Kennedy L. Studies on the structural, morphological, optical, and magnetic properties of α-Fe2O3 nanostructures by a simple one-step low temperature reflux condensing method. J Superconduct Novel Magnet. 2014;27:1721.
- Cha HG, Kim CW, Kim YH, Jung MH, Ji ES, Das BK, et al. Preparation and characterization of α-Fe2O3 nanorod-thin film by metal–organic chemical vapor deposition. Thin Solid Films. 2009;517:1853.
- Cao M, Liu T, Gao S, Sun G, Wu X, Hu C, et al. Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism, and properties. Angewandte Chem Int Edit. 2005;44:4197.
- Lin YM, Abel PR, Heller A, Mullins CB. α-Fe2O3 nanorods as anode material for lithium ion batteries. J Physic Chem Lett. 2011;2:2885.
- Lian J, Duan X, Ma J, Peng P, Kim T, Zheng W. Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano. 2009;3:3749.
- Soflaee F, Farahmandjou M, Firoozabadi TP. Polymer-mediated synthesis of iron oxide (Fe2O3) nanorods. Chin J of Physics. 2015;53:178.
- Farahmandjou M, Soflaee F. Low temperature synthesis of α-Fe2O3 nano-rods using simple chemical route. J Nanostruct. 2014;4:413.
- Li Z, Mao Y, Tian Q, Zhang W, Yang L. Extremely facile preparation of high-performance Fe2O3 anode for lithium-ion batteries. J Alloys Comp. 2019;784:125.
- Kusior A, Michalec K, Jelen P, Radecka M. Shaped α-Fe2O3 nanoparticlesa – Synthesis and enhanced photocatalytic degradation towards RhB. Appl Surf Sci. 2019;476:342.
- Qiu M, Wang R, Qi X. Hollow polyhedral α-Fe2O3 prepared by self-assembly and its photocatalytic activities in degradation of RhB. J Tai Instotute Chem Engin. 2019;102:394.
- Zhang HJ, Meng FN, Liu LZ, Chen YJ. Convenient route for synthesis of alpha-Fe2O3 and sensors for H2S gas. J Alloys Comp. 2019;774:1181.
- Li D, Xu R, Jia Y, Ning P, Li K. Controlled synthesis of α-Fe2O3 hollows from β-FeOOH rods. Chem Physics Lett. 2019;731:1336623.
- Jesus JR, Lima RJS, Moura KO, Duque JGS, Meneses CT. Anisotropic growth of α-Fe2O3 nanostructures. Ceram Int. 2018;44:3585.
- Hao C, Feng F, Wang X, Zhou M, Zhao Y, Ge C, et al. The preparation of Fe2O3 nanoparticles by liquid phase-based ultrasonic-assisted method and its application as enzyme-free sensor for the detection of H2O2. RSC Adv. 2015;5:21161.
- Rahman G, Najaf Z, Ali Shah AH, Mian SA. Investigation of the structural, optical, and photoelectrochemical properties of α-Fe2O3 nanorods synthesized via a facile chemical bath deposition. Optik. 2020;200:163454.
- Tadic M, Panjan M, Tadic BV, Lazovic J, Damnjanovic V, Kopani M, et al. Magnetic properties of hematite (α-Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution. J Electric Engin. 2019;70:71.
- Chen T, Jiang W, Sun X, Ning W, Liu Y, Xu G, et al. Size‐controlled Synthesis of Hematite α‐Fe2O3 Nanodisks Closed with (0001) Basal Facets and {11‐20} Side Facets and their Catalytic Performance for CO2 Hydrogenation. Chem Select. 2020;5:430.
- Tadic M, Kopanja L, Panjan M, Lazovic J, Tadic BV, Stanojevic B, et al. Rhombohedron and plate-like hematite (α-Fe2O3) nanoparticles: synthesis, structure, morphology, magnetic properties and potential biomedical applications for MRI. Mat Res Bullet. 2021;133:111055.
- Umar A, Ibrahim AA, Kumar R, Albargi H, Alsaiari MA, Ahmed F. Cubic shaped hematite (α-Fe2O3) micro-structures composed of stacked nanosheets for rapid ethanol sensor application. Sensors Actuat B: Chem. 2021;326:128851.
- Supattarasakda K, Petcharoen K, Permpool T, Sirivat A, Lerdwijitjarud W. Control of hematite nanoparticle size and shape by the chemical precipitation method. Powder Technol. 2013;249:353.
- Asoufi HM, Al-Antary TM, Awwad AM. Green route for synthesis hematite (α-Fe2O3) nanoparticles: Toxicity effect on the green peach aphid, Myzus persicae (Sulzer). Environ Nanotechnol Monitor Manag. 2018;9:107.
- Miri A, Khatami M, Sarani M. Biosynthesis, Magnetic and Cytotoxic Studies of Hematite Nanoparticles. J Inorgan Organom Polymers Mat. 2020;30:767.
- Khalaji AD, Ghorbani M. Thermal studies of iron(II) Schiff base complexes: new precursors for preparation of α-Fe2O3 nanoparticles via solid-state thermal decomposition. Chem Methodol. 2020;4:532.
- Khalaji AD, Ghorbani M, Dusek M, Eigner V. The bis(4-methoxy-2-hydroxybenzophenone) copper(II) complex used as a new precursor for preparation of CuO nanoparticles. Chem Methodol. 2020;4:143.
- Khalaji AD. Preparation and Characterization of ZnO Nanoparticles via Thermal Decomposition from Zinc(II) Schiff Base Complex as New Precursor. Chem Methodol. 2019;3:571.
- Rufus A, Sreeju N, Philip D. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 2016;6:94206.
- Xu YY, Zhao D, Zhang X.J, Jin W.T, Kashkarov P, Zhang H. Synthesis and characterization of single-crystalline α-Fe2O3 nanoleaves. Physic E. Low-dimmen Syst Nanostruct. 2009;41:806.
- Darezereshki E. One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite. Mat Lett. 2011;65:642.
- Nag S, Roychowdhury A, Das D, Mukherjee S. Synthesis of α-Fe2O3-functionalised graphene oxide nanocomposite by a facile low temperature method and study of its magnetic and hyperfine properties. Mat Res Bullet. 2016;74:109.
- Alves ICB, Santos JRN, Viégas DSS, Marques EP, Lacerda CA, Zhang L, et al. Nanoparticles of Fe2O3 and Co3O4 as Efficient Electrocatalysts for Oxygen Reduction Reaction in Acid Medium. J Brazil Chem Soc. 2019;30:2681.
- Tamez C, Hernandez R, Parsons JG, Removal of Cu(II) and Pb(II) from aqueous solution using engineered iron oxide nanoparticles. Microchem J. 2016;125:97.
- Han C, Han J, Li Q, Xie J. Wet chemical controllable synthesis of hematite ellipsoids with structurally enhanced visible light property. Sci World J. 2013: Article ID 410594, 5 pages.
- Natarajan S, Bajaj HC, Tayade RJ. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci. 2018;65:201.
- Cui H, Liu Y, Ren W. Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv Powder Technol. 2013;24:93.
- Lassoued A, Lassoued MS, Dkhill B, Ammar S. Synthesis, photoluminescence and magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Physic E. Low-dimmen Syst Nanostruct. 2018;101:212.
- Mazriuaa AM, Mohamed MG, Fekry M. Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egipt. J. Petrol. 2019;28:165.
- Cheary RW, Coelho AA. Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure. J Appl Crystallography. 1998;31:862.
- Pallela PNVK, Unney S, Ruddaraju LK, Gadi S, Cherukuri CS, Barla S, et al. Antibacterial sfficacy of green synthesized α-Fe2O3 nanoparticles using Sida cordifolia plant extract. Heliyon. 2019;5;e02765.
- Taghavi Fardood S, Moradnia F, Moradi S, Forootan R, Yekke Zare F, Heidari M. Eco-friendly synthesis and characterization of α-Fe2O3 nanoparticles and study of their photocatalytic activity for degradation of Congo red dye. Nanochem Res. 2019;4:140.
- Wang J, Shao X, Zhang Q, Tian G, Ji X, Bao W. Preparation of mesoporous magnetic Fe2O3 nanoparticles and its application for organic dye removal. J Mol Struct. 2017;248;13.
|