تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,930 |
تعداد دریافت فایل اصل مقاله | 97,220,412 |
مدل سازی تکنیک های بُرداری در ناحیه بندی مناطق همگن گردوغباری در ایران | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 10، دوره 52، شماره 4، دی 1399، صفحه 673-687 اصل مقاله (1.97 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2021.312755.1007566 | ||
نویسنده | ||
کاوه محمدپور* | ||
دکتری اقلیم شناسی، گروه جغرافیای طبیعی، دانشکدة علوم جغرافیایی، دانشگاه خوارزمی، تهران، ایران | ||
چکیده | ||
گردوغبارهای معدنی تحت عنوان عمدهترین نوع از هواویزههای وردسپهر هستند که تحت تأثیر تعامل سامانة جو- زمین هستند و اغلب درنتیجة شرایط آب و هوایی خشک و سرعت بالای باد ایجاد میشوند و مناطق حومه را تحت تأثیر قرار میدهند. در تحقیق حاضر، با استفاده از دادههای روزانه عمق نوری گردوغبار در 550 نانومتر بر روی گسترة ایران، سعی شد مناطق همگن گردوغباری بر روی ایران با استفاده از روش تحلیل مؤلفههای اصلی مدلسازی و طبقهبندی شود. بر پایة روش تحقیق، ایران به شش منطقة مجزای شمال شرق، غرب- شمالغرب، جنوبشرق، جنوبغرب، فلات مرکزی، و شرق ایران تفکیک شد که از مراکز عمدة تحت تأثیر گردوغبارند. پراکنش رخدادهای حدی نیز نشان داد که شکلگیری هر کدام از مناطق شناساییشده به دوری و نزدیکی آنها نسبت به مناطق مختلف منبع گردوغبار بستگی دارد و شکلگیری هر منطقه بر روی جو ایران تابع رشد، گسترش، و طغیان رژیمهای گردوغباری در سطح منطقهای است. درنهایت، تکنیکهای بهکارگرفتهشده موجب شد تا گردوغبار در قالب ساختارهای ساده و معنیدار فیزیکی ارائه و درک روشنی از مفهوم پراکنش جغرافیایی پدیده نمایان شود. | ||
کلیدواژهها | ||
ایران؛ تحلیل مؤلفه های اصلی؛ عمق نوری گردوغبار؛ ناحیه بندی | ||
عنوان مقاله [English] | ||
Vector Techniques Application in Line with Dust Modeling and Homogeneous Classification of Areas in Iran | ||
نویسندگان [English] | ||
Kaveh Mohammadpour | ||
Ph.D. in Climatology, Department of Climatology, Faculty of geographical Sciences, Kharazmi University,Tehran, Iran | ||
چکیده [English] | ||
Introduction Mineral dust is an aerosol, mostly affecting radiation budget, temperature change, cloud formation, convection, and precipitation, both directly and indirectly. During the two recent decades, new sensors and models have become available, allowing new research activities on dust. Important studies considered Atmospheric Optical Depth (AOD) as the key parameter for remote sensing and modeling of dust. The available model with the help of satellite and ground-station datasets have been used to detect and characterize mineral dust phenomenon in affected regions and dust sources. Nonetheless, regional classification over entire Iran, using remote sensing parameters, is still lacking. Materials and Methods The present study aims at modelling and detecting homogeneous areas of high dust concentration in Iran, using dust AOD at 550 nm from the MODIS satellite Aqua and Terra sensors (2003-2012) with a spatial resolution of 0.125°×0.125° or about 14 km2. Among vector techniques, S-mode application, as a Principal Component Analysis (PCA) or an example of Empirical Orthogonal Functions (EOFs), is the most applicable and controversial method of classification for doing so. The S-mode analysis was applied on a matrix, made of satellite observations at regularly spaced grid points of daily AOD values for ten years (2003-2012). The S-mode analysis was applied to identify the geographycal distribution of high dust concentrations. PCA of the n x m matrix was utilized and the scree test and North's rule were used to cut-off the statistically relevant components to be kept. Finally, in order to determine the best theoretical representation of the data, physical relations got embedded within the input matrix. Also to localize the territory to simpler structures, specific modes of the residual components got rotated by varimax. Varimax rotation means that each component had a few large loadings and many small loadings. This helps in the process of interpretation in case the results are prone to high values of the explained variance. The rotated patterns, however, illustrate simpler, more interpretable, and rational structures of mineral dust as principal modes. Identification of sub-regions and extreme dust loading was performed, using dust AOD values, assuming arbitrary thresholds of 87% and 95%, respectively. Therefore, the first threshold was used to determine sub-regions. Consequently, the regions would have zero overlapping. The second threshold helped extracting the days with extreme AODs of each region. Herein, the Kolmogorov-Smirnov (K-S) test was used to infer whether the regional mean time series PCs of each different sub-region were statistically different or not. Results and Discussion The spatial map-patterns of dust, amounting to 91% of AOD variability, had been divided into six subregions on Iran that were the major centers, affected by the dust. All of the sub-regions coincided with regional map-patterns, depending on the distance and proximity to dust sources around the territory. Therefore, overlapping of identified dust areas related to dust extremities in each of Iran’s regions showed that the dominant dust patterns of Iran were under the infuence of expansion and growth of dust extremities. The geographical location of source areas and the special dynamic conditions over mid-eastern atmosphere of Iran have been influenced by severe storms originating from the Karakum Desert. The northeast region is affected by the dust plume, from the Karakum Desert to Tabas Desert in the southeast of Kavir Desert. These results showed that ground-based station studies, albeit long-term, had not been able to detect the northeast region as a distinctive region under infuence by southward dust plume. The same was true for the Central plateau, East and Southeast regions. In return, more focus was directed at the role of 120-day winds as a main cause of dust transport. Considering the mentioned reasons, previous studies had not divided the borderline regions across Iran. Meanwhile, weakness and intensity of dust-affected areas showed that the multiplicity and adjacency of dust flow to southeastern and eastern parts of the country were different, playing a decisive role in the formation of east and southeast subregions. The shortcoming were observed for west-northwest and southwest regions, too. In a case study (on horizontal visibility), not only were the researchers capable of distinguishing the dusty subregions because of limited observations in the interested area, but also could not analyze the identified subregions, based on corresponding seasolality and extremities, identified by 95% and 87% in each region, respectively. The detected extremes showed that the identified sub-regions were a function of volume, growth, and expansion of dust particles, originated from the dust source regions across the Middle East and southwest Asia. Finally, the classification techniques showed that technical conversion of a dynamic phenomenon, like dust, into simpler and more meaningful physical structures geographically revealed a simple and interpretable understanding of dust distribution inside the territory of Iran. Morever, the use of remotely-sensed data utilized in the present study highligted the sub-regional distribution of dust over Iran, neglected by previous studies that provided a description of a dynamic process that was complementary to the ground-based observation analisys. In some cases, a day event only based on ground-based observations may have had a high dust AOD with very horizontal visibility, capable of being ignored due to the height of the dust layer. Therefore, the used technique integrated the knowlegde of dust based on grounded-measurement, providing a large scale view of dust advection and diffusion. Conclusion The study results showed that extraordinary dry conditions inside Iran, combined with outside dusty sources, had made the country to be influenced by high mineral dust aerosols. In addition to domestic sources of dust, the study highlighted that the mineral dust conditions in Iran were influenced by several arid and semi-arid sources beyond its boundaries acting as dust sources. The subregions that form the spatial patterns of dust distribution in a six-distinct region of northeast, west-northwest, southeast, southwest, central, and east Iran were affected by high dust aerosol optical depth (AOD). They were major centers of activity and high gradient areas (regions affected by dust) that followed a trend-distinctive seasonality. This managed to illustrate identified sub-regions’s seasonalities and regional extremes by remotely-sensed data of atmospheric optical depth. The study results demonstrated that dominant spatial dust patterns of Iran were functions of growth and expansion of dust extremes from source regions in the Middle East and southwest Asia. As a result, the present study showed that technical conversion of a dynamic phenomenon, such as dust, to simpler structures paved the way towards a geographical interpretation of dust distribution. | ||
کلیدواژهها [English] | ||
Dust, Iran, Principal Component Analysis (PCA), Zoning | ||
مراجع | ||
Abdi Vishkaee, F.; Flamant, C.; Cuesta, J.; Flamant, P. and Khalesifard, H.R. (2011). Multiplatform observations of dust vertical distribution during transport over northwest Iran in the summertime. J. Geophys. Res. 116(1): 2-13. Alizadeh Choobari, O.; Zawar-Reza, P. and Sturman, A. (2013). Low level jet intensification by mineral dust aerosols. Ann. Geophysicae. 31(4): 625-632. Alizadeh-Choobari, O.; Ghafarian, P. and Owlad, E. (2016). Temporal variations in the frequency and concentration of dust events over Iran based on surface observations. International Journal of Climatology. 36(1): 2050-2062. Alizadeh-Choobari, O.; Zawar-Reza, P. and Sturman, A. (2014). The “wind of 120 days” and dust storm activity over the Sistan Basin. Atmospheric Research. 143(1): 328-341. Arkian, F. and Nicholson, S. E. (2018). Long-term variations of aerosol optical depth and aerosol radiative forcing over Iran based on satellite and AERONET data, Environ Monit Assess. 190(1): 1-15. Awad, A. and Mashat, A.W. (2014). The Synoptic Patterns Associated with Spring Widespread Dusty Days in Central and Eastern Saudi Arabia. Atmosphere. 5(1): 889-913. Baghbanan, P.; Ghavidel, Y. and Farajzadeh, M. (2019). Spatial analysis of spring dust storms hazard in Iran. Theor Appl Climatol. 139(1): 1447-1457. Bangert, M.; Nenes, A.; Vogel, B.; Vogel1, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C. and Blahak, U. (2012). (2012). Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmospheric Chemistry and Physics.12(1): 4045-4063. Barry, R.G. and Carleton, A.M. (2001). Synoptic and Dynamic Climatology. Routledge. London. Benedetti, A.; Morcrette, J.-J.; Boucher, O.; Dethof, A.; Engelen, R. J.; Fisher, M.; Flentjes, H.; Huneeus, N.; Jones, L.; Kaiser, J. W.; Kinne, S.; Mangold, A.,; Razinger, M.; Simmons, A. J.; Suttie, M.; GEMS-AER, Team (2009). Aerosol analysis and forecast in the ECMWF Integrated Forecast System. Part II: Data assimilation. Journal of Geophysics Research. 114(1): 1-18. Boloorani, A.D.; Nabavi, S.O.; Bahrami, H.A.; Mirzapour, F.; Kavosi, M.; Abasi, E. and Azizi, R. (2014). Investigation of dust storms entering Western Iran using remotely sensed data and synoptic analysis. Iranian Journal of Environmental Health Science. 12(1): 1-12. Cao, H.; Amiraslani, F.; Liu, J. and Zhou, N.(2015). Identification of dust storm source areas in West Asia using multiple environmental datasets. Science of the Total Environment, 502(1): 224-235. Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research. 1(1): 245-276. Cerny, C.A. and Kaiser, H.F. (1977). A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivariate Behavioral Research. 12(1): 43-47. Compagnucci, Rosa H. and Salles, Maria A. (1997). Surface Pressure Patterns During The Year Over Southern South America. International Journal of Climatology. 17(1): 635-653. Compagnucci Rosa, H. and Richman, M. B. (2008). Can principal component analysis provide atmospheric circulation or teleconnection patterns?. International Journal of Climatology. Vol 28(1): 703-726. Das, S.; Dey, S.; Dash, S.K.; Giuliani, G. and Solmon, F. (2015). Dust aerosol feedback on the Indian summer monsoon: sensitivity to absorption property. Journal of Geophysics Research. 12(1): 9642-9652. Fattahi, E.; Noohi, K. and Shiravand, H. (2012). Study of dust storm synoptical patterns in southwest of Iran. Desert. 17(1): 49-55. Gkikas, A.; Hatzianastassiou, N. and Mihalopoulos, N. (2009). Aerosol events in the broader Mediterranean basin based on 7-year (2000–2007) MODIS C005 data. Annales Geophysicae. 27(1): 3509-3522. Goudie, A. and Middelton, N. (2006). Desert Dust in the Global System. Springer Hamidi, M.; Kavianpour, M.R. and Shao, Y. (2013). Synoptic analysis of dust storms in the Middle East. Asia-Pacific Journal of Atmospheric Sciences. 49(1): 279-286. Hamidi, M.; Kavianpour, M.R. and Shao, Y. (2017). A quantitative evaluation of the 3–8 July 2009 Shamal dust storm. Aeolian Research. 24(1): 133-143. Huth, R. (1996). An intercomparison of computer-assisted circulation classification methods. International Journal of Climatology. 16: 893-922. Huth, R.; Nemesova, I. and Klimperov, N. (1993). Weather categorization based on the average linkage clustering technique: an application to European mid-latitudes. International Journal of Climatology. 13(1): 817-835. Islam, M. N. and Almazroui, M. (2012). Direct effects and feedback of desert dust on the climate of the Arabian Peninsula during the wet season: a regional climate model study, Climate Dynamics. 39(1): 2239-2250. Jish Prakash, P.; Stenchikov, G.; Kalenderski, S.; Osipov, S. and Bangalath, H. (2015). The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmospheric Chemistry and Physics. 15(1): 199-222. Jolliffe, IT.; Uddin, M. and Vines, SK. (2002). Simplified EOFs-three alternatives to rotation. Climate Research. 20(1): 271-279. Kaiser, H. F. (1958). The Varimax criterion for analytic rotation in factor analysis, Psychometrika. 23(3): 187-200. Kaiser, H. F. (1959). Computer program for Varimax rotation in factor analysis, Educ. Psych. Meas. 19(3): 413-420. Kaskaoutis, D. G.; Rashki, A.; Houssos, E. E.; Mofidi, A.; Goto, D.; Bartzokas, A.; Francois, P. and Legrand, M. (2015). Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Climate Dynamics, 45(2): 407-424. Kaskaoutis, D.G.; Houssos, E.E.; Minvielle, F.; Rashki, A.; Chiapello, I.; Dumka, U.C. and Legrand, M. (2018). Long-term variability and trends in the Caspian Sea – Hindu Kush Index: influence on atmospheric circulation patterns, temperature and rainfall over the Middle East and southwest Asia. Global and Planetary Change. 169(1): 16-33. Kaskaoutis, D.G.; Houssos, E.E.; Rashki, A.; Francois, P.; Legrand, M.; Goto, D.; Bartzokas A.; Kambezidis, H.D. and Takemura, T. (2016). The Caspian Sea – Hindu Kush Index (CasHKI): a regulatory factor for dust activity over southwest Asia. Global and Planetary Change. 137(1): 10-23. Klingmüller, K.; Andrea, P.; Swen, M.; Georgiy L. Stenchikov and Lelieveld, J. (2016). Aerosol optical depth trend over the Middle East. Atmospheric Chemistry and Physics. 16(8): 5063-5073. Kostopoulou, E. and Jones, P. D. (2007). Comprehensive analysis of the climate variability in the eastern Mediterranean. Part I: map-pattern classification, International Journal of Climatology. 27(9): 1189-1214. Middleton, N.J. (1986). Dust storms in the Middle East. J. Arid Environ. 10: 83-96. Morcrette, J.-J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, A.; Kaiser, J. W.; Razinger, M.; Schulz, M.; Serrar, S.; Simmons, A. J.; Sofiev, M.; Suttie, M.; Tompkins, A. M. and Untch, A. (2009). Aerosol analysis and forecast in the ECMWF integrated forecast system. Part I: Forward modelling. Journal of Geophysical Research. 114(D06206): 1-17. Nabavi, S. O.; Haimberger, L. and Samimi, C. (2017). Sensitivity of WRF-chem predictions to dust source function specification in West Asia, Aeolian Research. 24(1): 115-131. Nabavi, S.O.; Haimberger, L. and Samimi, C. (2016). Climatology of dust distribution over West Asia from homogenized remote sensing data, Aeolian Research. 21(1): 93-107. Namdari, S.; Karimi, N.; Sorooshian, A.; Mohammadie, Gh.H. and Sehatkashani, S. (2018). Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmospheric Environment. 173(1): 265-276. North, G.R.; Bell, T.L.; Cahalan, R.F. and Moeng, F.J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review. 110(1): 699-706. Prijith, S.S.; Rajeev, K.; Thampi, B.V.; Nair, S.K. and Mohan, M. (2013). Multi-year observations of the spatial and vertical distribution of aerosols and the genesis of abnormal variations in aerosol loading over the Arabian Sea during Asian summer monsoon season. Journal of Atmospheric and Solar-Terrestrial Physics. 105-106(1): 142-151. Prospero, J.; Ginoux, M.; Torres, P.; Nicholson, S. E. and Gill, T. E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product, Reviews of Geophysics. 40(1): 2-31. Rashki, A.; Kaskaoutis, D.G.; Mofidi, A.; Minvielle, F.; Chiapello, I.; Legrand, M.; Dumka, U.C. and Francois, P. (2019). Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer – The July 2016 case. Aeolian Research. 36(1): 27-44. Rashki, A.; Kaskaoutis, D. G.; Francois, P.; Kosmopoulos, P.G. and Legrand, M. (2015). Dust – storm dynamics over Sistan Region, Iran: seasonality, Transport, characteristics and affected areas, Aeolian research. 16(1): 35-48. Rashki, A.; Kaskaoutis, D.G.; Rautenbach, C.J.W.; Eriksson, P.G.; Qiang, M. and Gupta, P. (2012). Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Research. 5(1): 51-62. Rezazadeh, M.; Irannejad, P. and Shao, Y. (2013). Climatology of the Middle East dust events. Aeolian Research. 10(1): 103-109. Richman, M.B. (1981). Obliquely rotated principal components: an improved meteorological map typing technique?, Journal of Applied Meteorology. 20(1): 1145-1159. Richman, M.B. (1986). Review article. Rotation of principal components. Journal of Climatology. 6(1): 293-335. Serra, C.; Fernandez Mills, G.; Periago, M.C. and Lana, M. (1996). Winter and autumn daily precipitation patterns in Catalonia, Spain. Theoretical and Applied Climatology. 54(1): 175-186 Shen, S.S.P.; Wied, O.; Weithmann, A.; Regele, T.; Bailey, B.A. and Lawrimore, J.H. (2015). Six temperature and precipitation regimes of the contiguous United States between 1895 and 2010: a statistical inference study. Theoretical and Applied Climatology. 125(1): 197-211. Wang, W.; Chen, X.; Shi, P. and van Gelder PHAJM (2008). Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China. Hydrology and Earth System Sciences. 12(1): 207-221. White, D.; Richman, M. and Yarnal, B. (1991). Climate regionalization and rotation of principal components. International Journal of Climatology. 11(1): 1-25. Yarnal, B. (1993). Synoptic Climatology in Environmental Analysis. Belhaven Press. London. Yarnal, B.; Comrie, A.C.; Frakes, B. and Brown, D.P. (2001). Developments and prospects in synoptic climatology. International Journal of Climatology. 21(1): 1923-1950. Zoljoodi, M.; Didevarasl, A. and Ranjbar Saadatabadi, A. (2013). Dust Events in the Western Parts of Iran and the Relationship with Drought Expansion over the Dust-Source Areas in Iraq and Syria. Atmospheric and Climate Sciences. 3(1): 321-336. | ||
آمار تعداد مشاهده مقاله: 597 تعداد دریافت فایل اصل مقاله: 359 |