تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,525,524 |
تعداد دریافت فایل اصل مقاله | 98,788,146 |
$4$-total mean cordial labeling of special graphs | ||
Journal of Algorithms and Computation | ||
دوره 53، شماره 1، شهریور 2021، صفحه 13-22 اصل مقاله (266.33 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2021.81169 | ||
نویسندگان | ||
R Ponraj* 1؛ S SUBBULAKSHMI2؛ S Somasundaram3 | ||
1Department of Mathematics Sri Parakalyani College Alwarkurichi -627 412, India | ||
2Sri Paramakalyani College Alwarkurichi-627412, Tamilnadu, India | ||
3Department of Mathematics Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India | ||
چکیده | ||
Let $G$ be a graph. Let $f:V\left(G\right)\rightarrow \left\{0,1,2,\ldots,k-1\right\}$ be a function where $k\in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $f\left(uv\right)=\left\lceil \frac{f\left(u\right)+f\left(v\right)}{2}\right\rceil$. $f$ is called $k$-total mean cordial labeling of $G$ if $\left|t_{mf}\left(i\right)-t_{mf}\left(j\right) \right| \leq 1$, for all $i,j\in\left\{0, 1, \ldots, k-1\right\}$, where $t_{mf}\left(x\right)$ denotes the total number of vertices and edges labelled with $x$, $x\in\left\{0,1,2,\ldots,k-1\right\}$. A graph with admit a $k$-total mean cordial labeling is called $k$-total mean cordial graph. | ||
آمار تعداد مشاهده مقاله: 311 تعداد دریافت فایل اصل مقاله: 328 |