- Azarpour, E., Moraditochaee, M., & Bozorgi, H. R. (2012). Evaluation energy balance and energy indices of peanut production in north of Iran. African Journal of Agricultural Research, 7(16), 2569-2574.
- Cochran, W. G., (1963). Sampling Techniques. 2nd Ed., New York: John Wiley and Sons, Inc.
- Ekici, B. B., & Aksoy, U. T. (2011). Prediction of building energy needs in early stage of design by using ANFIS. Expert Systems with Applications, 38(5), 5352-5358.
- Fei, R., & Lin, B. (2016). The integrated efficiency of inputs–outputs and energy – CO2 emissions performance of China's agricultural sector. Renewable and Sustainable Energy Reviews, 75, 668-676.
- Hosseini-Fashami, F., Motevali, A., Nabavi‐Pelesaraei, A., Hashemi, S. J., & Chau, K. W. (2019). Energy-Life cycle assessment on applying solar technologies for greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 116, 1109411, 1-18.
- Hosseinzadeh-Bandbafha, H., Nabavi‐Pelesaraei, A., & Shamshirband, S. (2017). Investigations of energy consumption and greenhouse gas emissions of fattening farms using artificial intelligence methods. Environmental Progress & Sustainable Energy, 36(5), 1546-1559.
- Hosseinzadeh-Bandbafha, H., Nabavi-Pelesaraei, A., Khanali, M., Ghahderijani, M., & Chau, K. W. (2018). Application of data envelopment analysis approach for optimization of energy use and reduction of greenhouse gas emission in peanut production of Iran. Journal of Cleaner Production, 172, 1327-1335.
- Kaul, M., Hill, R. L., & Walthall, C. (2005). Artificial neural networks for corn and soybean yield prediction. Agricultural Systems, 85(1), 1-18.
- Kay, J. W., & Titterington, D. M. (2000). Statistics and Neural Networks. Technometrics, 42(4), 443-447.
- Kouchaki-Penchah, H., Sharifi, M., Mousazadeh, H., Zarea-Hosseinabadi, H., & Nabavi-Pelesaraei, A. (2016). Gate to gate life cycle assessment of flat pressed particleboard production in Islamic Republic of Iran. Journal of Cleaner Production, 112, 343-350.
- Meul, M., Nevens, F., Reheul, D., & Hofman, G. (2007). Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agriculture, Ecosystems & Environment, 119(1-2), 135-144.
- Mobtaker, H. G., Akram, A., & Keyhani, A. (2012). Energy use and sensitivity analysis of energy inputs for alfalfa production in Iran. Energy for Sustainable Development, 16(1), 84-89.
- Mobtaker, H. G., Keyhani, A., Mohammadi, A., Rafiee, S., & Akram, A. (2010). Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems & Environment, 137(3-4), 367-372.
- Mobtaker, H. G., Mostashari-Rad, F., Saber, Z., Chau, K. W., & Nabavi-Pelesaraei, A. (2020). Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran. Renewable Energy, 160, 1316-1334.
- Mostashari-Rad, F., Mobtaker, H. G., Taki, M., Ghahderijani, M., Kaab, A., Chau, K. W., & Nabavi-Pelesaraei, A. (2021). Exergoenvironmental damages assessment of horticultural crops using ReCiPe2016 and cumulative exergy demand frameworks. Journal of Cleaner Production, 278, 123788, 1-18.
- Mostashari-Rad, F., Nabavi-Pelesaraei, A., Soheilifard, F., Hosseini-Fashami, F., & Chau, K. W. (2019). Energy optimization and greenhouse gas emissions mitigation for agricultural and horticultural systems in Northern Iran. Energy, 186, 115845,
- Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011). Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 36(5), 2765-2772.
- Nabavi-Pelesaraei, A. (2014). Modeling and optimization of energy consumption and emissions for dominant cultivation patterns of Astaneh-Ashrafiyeh and Langroud cities in Guilan province using expert systems. M.Sc. thesis, University of Tabriz., Tabriz. (In Farsi).
- Nabavi-Pelesaraei, A., Abdi, R., & Rafiee, S. (2016). Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. Journal of the Saudi Society of Agricultural Sciences, 15(1), 38-47.
- Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Mobtaker, H. G. (2014). Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 65, 311-317.
- Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., Shamshirband, S., & Yousefinejad-Ostadkelayeh, M. (2016). Resource management in cropping systems using artificial intelligence techniques: a case study of orange orchards in north of Iran. Stochastic Environmental Research and Risk Assessment, 30(1), 413-427.
- Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Berrada, A. (2017). Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management. Journal of Cleaner Production, 154, 602-613.
- Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hosseinzadeh-Bandbafha, H., & Chau, K. W. (2018). Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Science of the Total Environment, 631, 1279-1294.
- Nemecek, T., Huguenin-Elie, O., Dubois, D., Gaillard, G., Schaller, B., & Chervet, A. (2011). Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agricultural Systems, 104(3), 233-245.
- Nikkhah, A., Emadi, B., & Firouzi, S. (2015). Greenhouse gas emissions footprint of agricultural production in Guilan province of Iran. Sustainable Energy Technologies and Assessments, 12, 10-14.
- Ozkan, B., Akcaoz, H., & Karadeniz, F. (2004). Energy requirement and economic analysis of citrus production in Turkey. Energy Conversion and Management, 45(11-12), 1821-1830.
- Pahlavan, R., Omid, M., & Akram, A. (2012). Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy, 37(1), 171-176.
- Pathak, H., & Wassmann, R. (2007). Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients. Agricultural Systems, 94(3), 807-825.
- Pishgar-Komleh, S. H., Ghahderijani, M., & Sefeedpari, P. (2012). Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner production, 33, 183-191.
- Saber, Z., Esmaeili, M., Pirdashti, H., Motevali, A., & Nabavi-Pelesaraei, A. (2020). Exergoenvironmental-Life cycle cost analysis for conventional, low external input and organic systems of rice paddy production. Journal of Cleaner Production, 278, 121529, 1-16.
- Sefeedpari, P., Rafiee, S., Akram, A., Chau, K. W., & Pishgar-Komleh, S. H. (2016). Prophesying egg production based on energy consumption using multi-layered adaptive neural fuzzy inference system approach. Computers and electronics in agriculture, 131, 10-19.
- Skunca, D., Tomasevic, I., Nastasijevic, I., Tomovic, V., & Djekic, I. (2018). Life cycle assessment of the chicken meat chain. Journal of Cleaner Production, 184, 440-450.
- Taghavifar, H., & Mardani, A. (2015). Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using Artificial Neural Network. Journal of Cleaner Production, 87, 159-167.
- Taki, M., Mahmoudi, A., Mobtaker, H. G., & Rahbari, H. (2012). Energy consumption and modeling of output energy with multilayer feed-forward neural network for corn silage in Iran. Agricultural Engineering International: CIGR Journal, 14(4), 93-101.
- Taseska, V., Markovska, N., Causevski, A., Bosevski, T., & Pop-Jordanov, J. (2011). Greenhouse gases (GHG) emissions reduction in a power system predominantly based on lignite. Energy, 36(4), 2266-2270.
- Zangeneh, M., Omid, M., & Akram, A. (2010). Assessment of agricultural mechanization status of potato production by means of artificial neural network model. Australian Journal of Crop Science, 4(5), 372-377.
|