- Cordeiro GM, De Castro M. A new family of generalized distributions. J. Stati. Comput. Simul.. 2011;81:883-898.
- Dey S, Sharma, VK, Mesfioui M. A new extension of Weibull distribution with application to lifetime data. Ann. Data. Sci. 2017;4:31–61.
- Keilson J, Sumita U. Uniform stochastic ordering and related inequalities. Canad. J. Stat. 1982;10:181-I98.
- Muller A, Stoyan D. Comparison Methods for Stochastic Models and Risks. 2002;Wiley, New York.
- Li X, Zuo MJ. Preservation of stochastic orders for random minima and maxima, with applications. Naval Res. Log. 2004;51:332-344.
- Zhao P. Some new results on convolutions of heterogeneous gamma random variables. J. Multivar. Anal. 2011;102:958-976.
- Mahdy M. Stochastic ordering and reliability analysis of inactivity lifetime with a cold standby. Am J. Math. Manag. Sci. 2018;DOI: 10.1080/01966324.2018.1502702.
- Shaked M and Shanthikumar JG. Stochastic orders. 2007; Springer, Berlin, Germany.
- Belzunce F. An introduction to the theory of stochastic orders. Estadistica. 2010;26,4-18.
- Belzunce F, Martínez-Riquelme C., Mulero J. An Introduction to Stochastic Orders. Elsevier Ltd; 2016.
- Giovagnoli A, Wynnb H.P. Stochastic orderings for discrete random variables. Stat. Probab. Lett. 2008;78:2827–2835.
- Yu Y. Stochastic ordering of exponential family distributions and their mixtures. J. Appl. Probab. 2009;46:244-254.
- Klenke A, Mattner L. Stochastic ordering of classical discrete distributions. Adv. Appl. Probab. 2010;42:392-410.
- Pan X, Qiu G, Hu T. Stochastic orderings for elliptical random vectors. J. Multivar. Anal. 2016;148:83-88.
- Raeisi M and Yari G. Some dependencies, stochastic orders and aging properties in an extended additive hazards model. J. Sci. Technol. Transaction A: Science. 2018;42:745–752.
- Catana, LI, Raducan A. Stochastic order for a multivariate uniform distributions family. 2020; 8, DOI: 10.3390/math8091410.
- Jones M. Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. Methodol. 2009;6:70–81.
- Eugene N, Lee C, Famoye F. Beta-normal distribution and its application. Stat. Theory. Methods. 2002;31:497–512.
- Famoye F, Lee C, Olumolade O. The beta-Weibull distribution. Stat. Theory. Appl. 2005;4:121–136.
- Nadarajah S, Kotz S. The beta-exponential distribution reliability, engineering and system safety. Eng. Syst. Saf. 2006;91:689–697.
- Akinsete A, Famoye F, Lee C. The Beta-Pareto distribution. 2008;42:547-563.
- Paranaiba PF, Ortega EMM, Cordeiro GM, Pescim RR. The beta Burr XII distribution with application to lifetime data. Comput. Stat. Data. Anal. 2011;55:1118-1136.
- Cordeiro GM, Ortega, EMM, Nadarajah S. The Kumaraswamy Weibull distribution with application to failure data. Franklin Institute. 2010;81:1399-1429.
- Pascoa AR, Ortega EMM, and Cordeiro GM. The Kumaraswamy generalized gamma distribution with application in survival analysis. Methodol 2011;8:411–433.
- Cordeiro GM, Pescim RR, Ortega, EMM. The Kumaraswamy generalized half-normal distribution for skewed positive data. Data. Sci. 2012;10: 195-224.
- Dey S, Nassar M, Kumar D. Alpha power transformed inverse Lindley distribution: A distribution with an upside-down bathtub-shaped hazard function. J. Comput. Appl. Math. 2019;348:130-45.
- Hassan AS, Elgarhy M, Mohamd RE and Alrajhi S. On the Alpha Power transformed power Lindley distribution. J. Probab. Stat. 2019;Article ID 8024769, 13 pages.
- McGilchrist CA and Aisbett CW. Regression with frailty in survival analysis. Biometrics. 1991;47(2):461-466.
- Erbay A, Ergonul O, Stoddard JS and Samore MH. Recurrent catheter-related bloodstream infections: risk factors and outcome. Int. J. Infect. Dis. 2006;10:396-400.
- Delistefani F, Wallbach M, Müller GA, Koziolek MK and Grupp C. Risk factors for catheter-related infections in patients receiving permanent dialysis catheter. BMC. Nephrol. 2019;20:199.
- Hanagal DD and Dabade AD. Comparison of Shared Frailty Models for Kidney Infection Data under Exponential Power Baseline Distribution. Commun. Stat.Theory. Methods. 2015;44: 5091–5108.
- Mahdavi A and Kundu D. A new method for generating distributions with an application to exponential distribution. Commun. Stat. Theory. Methods. 2017;46:6543-6557.
- Lehmann EL and Casella, G. The Theory of Point Estimation. 1998; Springer, USA.
-
- Mrsevi M. Convexity of the inverse function. Teach. Math. 2008;11:21-24.
- Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press; 2009.
- Nadarajah S, Kotz S. Strength modeling using Weibull distributions. J. Mech. Sci. Technol. 2008;22:1247-125.
- Mudholkar G, Srivastava D, Freimer M. The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. 1995;37:436–445.
|