تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,645 |
تعداد دریافت فایل اصل مقاله | 97,221,358 |
بررسی تغییرات مکانی و زمانی آبدهی فصلی و سالانۀ حوزۀ کرخه | ||
نشریه علمی - پژوهشی مرتع و آبخیزداری | ||
مقاله 14، دوره 74، شماره 1، خرداد 1400، صفحه 207-221 اصل مقاله (1.9 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jrwm.2021.317435.1560 | ||
نویسندگان | ||
مجتبی نساجی زواره* 1؛ باقر قرمزچشمه2؛ مسلم محمدپور3 | ||
1استادیار مؤسسۀ آموزش و ترویج کشاورزی، سازمان تحقیقات آموزش و ترویج کشاورزی، تهران، ایران. | ||
2استادیار پژوهشکدۀ حفاظت خاک و آبخیزداری، سازمان تحقیقات آموزش و ترویج کشاورزی، تهران، ایران. | ||
3استادیار مرکز آموزش عالی امام خمینی (ره)، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران. | ||
چکیده | ||
تغییرات اقلیمی و کاربری اراضی میتواند باعث تغییر در روند آبدهی فصلی و سالانۀ رودخانه شود. تغییرات آبدهی سالانه و فصلی رودخانه بایستی در مدیریت و برنامهریزی منابع آب در حوزۀ آبخیز مد نظر قرار گیرد. برای این منظور در این تحقیق حوضۀ کرخه مورد بررسی قرار گرفت. در تحلیل روند آبدهی این حوزه، سریهای زمانی روزانۀ 15 زیر حوزۀ منتخب در دورۀ زمانی 48-1347 الی 91-1390 استفاده گردید. پس از بازسازی سریهای زمانی زیر حوزههای منتخب، 5 شاخص آبدهی شامل دبی با احتمال 5، 95 و 50 درصد (Q5,Q10,Q50,Q90,Q95) فصلی و سالانه برای مراحل بعدی پژوهش آماده شد. روند آبدهی فصلی و سالانه با استفاده از روش تایل-سن محاسبه و سپس درصد تغییرات آبدهی در دورۀ زمانی 48-1347 الی 91-1390 برای زیر حوزههای منتخب تعیین و نقشۀ آبدهی سالانه و فصلی برای هر شاخص تهیه شد. نتایج نشان داد که آبدهی فصلی و سالانه در اغلب زیر حوزههای منتخب، روند کاهشی و منفی داشت. زیر حوزههای منتخب جنوب شرق حوزه دارای روند کاهشی کمتری نسبت به دیگر زیر حوزهها را دارا بود. دبی کم آبی (Q90,Q95) نسبت به دبی پرآبی (Q5,Q10) روند کاهشی شدیدتری را نشان داد. شاخص پرآبی فصل بهار در زیر حوضۀ کاکارضا و آفرینه روند افزایشی داشتند. این دو زیر حوزه مستقل بوده و تحت تأثیر رواناب زیرحوزههای دیگر نمی باشد. افزایش روند شاخص پرآبی در این دو زیر حوزه را می توان به افزایش دمای ناشی از تغییر اقلیم و ذوب زود هنگام برف نسبت داد. | ||
کلیدواژهها | ||
آنالیز آبدهی؛ شاخص آبدهی؛ روش تایل-سن؛ حوضه کرخه | ||
عنوان مقاله [English] | ||
Assessment of spatial and temporal variation of seasonal and annual streamflow in Karkheh River Basin | ||
نویسندگان [English] | ||
Mojtaba Nassaji Zavareh1؛ Bagher Ghermezcheshmeh2؛ Moslem Mohammadpour3 | ||
1Assistant Professor | ||
2Researcher of Soil Conservation & Watershed Management Research Institute (SCWMRI) | ||
3assistance professor of Imam Higher Education Center | ||
چکیده [English] | ||
Land use and climate change can alter the seasonal and annual discharge of rivers. Annual and seasonal river discharge changes should be considered in the management and planning of water resources in basins. For this propose, Karkheh basin was selected for study. For trend analysis of this basin daily discharge time series in 15 sub-basins during the 1969-2012 period. After reconstruction of time series of selected sub-basin, five discharge indicators including seasonal and annual Q5, Q10, Q50, Q90 and Q95 were prepared for future analyses. The seasonal an annual discharge trends were calculated using Thiel-Sen method, then discharge percent changes in the 1969-2012 for selected sub-basins were determined and seasonal and annual discharge map for each indicator was prepared. The result showed that seasonal and annual discharge in most selected sub-basin had decreasing and negative trend. The selected sub-basin in the southeast had less decreasing trend relative to other ones. Low flow (Q5, Q10) relative to high flow (Q90, Q95) had steeper decreasing trend. The spring high flow indicator related to Kakareza and Afrineh sub-basins had increasing trend. These two sub-basins were independent and are not influence by any other runoff. The increase in high flow in these two sub-basins can be caused by increase in temperature due to climate change and early snow melting in recent years | ||
کلیدواژهها [English] | ||
Discharge analysis, Discharge indicator, Thiel-Sen method, Karkheh basin | ||
مراجع | ||
[1] Abdul Aziz, O. and Burn, D. (2006). Trends and variability in the hydrological regime of the Mackenzie River Basin. Journal of Hydrology. 319: 282-294. [2] Ashraf, M.S., Ahmad, I., Khan, N.M., Zhang, F., Bilal, A., Guo, J. (2021).Streamflow variations in monthly, seasonal, annual and extreme values using Mann-Kendall, Spearmen’s Rho and Innovative trend analysis. Water Resources Management. 35, 243-261. [3] Bard, A., Renard, B., Lang, M., Giuntoli, I., Korck, J., Koboltschnig, G. and Volken, D. (2015). Trends in the hydrologic regime of Alpine rivers. Journal of Hydrology. 529: 1823-1837. [4] Birsan, M., Molnar, P., Burlando, P. and Pfaundler, M. (2005). Streamflow trends in Switzerland. Journal of Hydrology. 314: 312-329. [5] Groisman, P., Knight, R., Karl, T., Easterling, D., Sun, B. and Lawrimore, J. (2004) Contemporary changes of the hydrological cycle over the contiguous United States, trends derived from in situ observations. Journal of hydrometeorology. 5 (1) 64-85 (February 2004). AMS Abstract, Purchase, AMS Subscriber, NCDC Staff85. [6] Hamed, K. (2008). Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology. 349: 350–363. [7] Hann Charles, T. (2002). Statistical Methods in Hydrology.Iowa State Press, A Blackwell Publishing Company. [8] Hannaford, J. and Buys, G. (2012). Trend in seasonal river flow regimes in the UK. Journal of Hydrology. 475: 158-174. [9] Helsel, D.R., R.M. Hirsch, 1992. Statistical Methods in Water Resources. Elsevier, Amsterdam. [10] IPCC (Intergovernmental Panel on Climate Change). (2007). Climate Change (2007), The Physical Science Basis, A Contribution of Working Groups. I, to the Forth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon and the Core Writing Team (eds). Cambridge University press, Cambridge United Kingdom and New York, USA. [11] Li, L., Zhang, L., Wang, H., Wang, J., Yang, J., Jiang, D., Li, J. and Qin, D. (2007). Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrological Processes, 21: 3485–3491. [12] Ma, Z., Kang, S., Zhang, L., Tong, L. and Su, X. (2008). Analysis of impacts of climate variability and human activity on stream flow for a river basin in arid region of northwest China. Journal of Hydrology. 352: 239–249. [13] Masseroni, D., Camici, S., Cislaghi, A., Vacchiano, G., Massari,C., Brocca,L. (in prees). 65-year changes of annual streamflow volumes across Europe with a focus on the Mediterranean basin.Hydrology and earth System Sciences. [14] Mirabbasi Najafabadi, R. and Dinpashoh, Y. (2010). Trend analysis of streamflow across the north west of Iran in recent three decades. Journal of Water and Soil, 24(4), 757-768. [15] Mu, X., Zhang, L., McVicar, T., Chille, B. and Gau, P. (2007). Analysis of the impact of conservation measures on streamflow regime in catchments of the Loess Plateau, China. Hydrological Processes. 21: 2124–2134. [16] Nabavi, S.S., Mostafazadeh, R., Asiabi-hir, R. nad Hazbav, Z. (2018). Determining the monthly utilizable water volume from Zahre River to secure drinking water of Handijan city. Journal of Irrigation and Water Engineering, 31, 107-120. [17] Nassaji Zavareh, M., Khorshiddoust, A., Rasouli, A. and Slajegheh, A.(2014). Assessment of discharge trend of Kasilian watershed. Iranian Journal of Watershed Management Science, 8(24), 1-8. [18] Novotny, E. and Stefan, H. (2007). Stream flow in Minnesota: Indicator of climate change. Journal of Hydrology. 334: 319-333. [19] Petrow, T., and Merz, B. (2009). Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. Journal of Hydrology. 371: 129-141. [20] Rahimzadeh, F., Nassaji Zavareh., M. (2014). Effects of adjustment for non-climatic discontinuities on determination of temperature trends and variability over Iran. International Journal of Climatology, 34, 2079–2096. [21] Scanlon, B., Jolly, I., Sophocleous, M. and Zhang, L. (2007). Global impacts of conversion from natural to agricultural ecosystem on water resources: quantity versus quality. Water Resources Research, 43: W03437, doi: 10.1029/2006WR005486. [22] Sen, P.K., )1968(. Estimates of the regression coefficient based on Kendall’s Tau. Journal of American Statistical Association. 63: 1379–1389. [23] Torabi Poodeh, H. and Emamgholizadeh, S. (2015). Trend analysis of streamflow changing of north watershed of Dez River with TFPW-MK procedure. Journal of Water and Soil Conservation, 22(3), 39-55. [24] Wilson, D., Hisdal, H. and Lawrence, D. (2010). Has streamflow changed in the Nordic countries? Recent trends and comparisons to hydrological projections. Journal of Hydrology. 394: 334-346. [25] Zhang, Y., Guan, D., Jin, C., Wang, A., Wu, J. and Yuan, F. (2011). Analysis of impacts of climate variability and human activity on streamflow for a river basin in northeast China. Journal of Hydrology. 410: 239-24. | ||
آمار تعداد مشاهده مقاله: 379 تعداد دریافت فایل اصل مقاله: 238 |