تعداد نشریات | 161 |
تعداد شمارهها | 6,529 |
تعداد مقالات | 70,457 |
تعداد مشاهده مقاله | 124,013,189 |
تعداد دریافت فایل اصل مقاله | 97,127,362 |
تحلیل حساسیت اثر عوامل اقلیمی و غیر اقلیمی بر نوسانات تراز آب زیرزمینی (مطالعه موردی: دشت نجفآباد) | ||
مدیریت آب و آبیاری | ||
دوره 11، شماره 3، آبان 1400، صفحه 473-484 اصل مقاله (869.04 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jwim.2021.325230.882 | ||
نویسنده | ||
محمد جواد زارعیان* | ||
استادیار، پژوهشکده مطالعات و تحقیقات منابع آب، موسسه مؤسسه تحقیقات آب، تهران، ایران. | ||
چکیده | ||
این پژوهش به منظور بررسی عوامل اصلی اثرگذار بر نوسانات سطح آب زیرزمینی در دشت نجفآباد انجام گرفته است. جهت انجام این تحلیل، بازه زمانی 10ساله سالهای 2004 تا 2014 در نظر گرفته شد و نوسانات دما، بارش، تغییرات دبی رودخانه بین دو مقطع ابتدا و انتهای محدوده مطالعاتی، تغییرات بهرهبرداری از آب زیرزمینی و تغییرات جریان آب در شبکههای آبیاری و زهکشی بررسی گردید. جهت برقراری ارتباط میان هر کدام از مؤلفههای ذکرشده با تغییرات تراز آب زیرزمینی در محدوده مطالعاتی، دو دستهبندی کلی برای تعیین هیدروگراف واحد آب زیرزمینی در نظر گرفته شد. در دستهبندی اول، هیدروگراف واحد آب زیرزمینی برای کل چاههای مشاهدهای در محدوده مطالعاتی تهیه شد. در دستهبندی دوم نیز این هیدروگراف برای چاههای مشاهدهای اطراف رودخانه تهیه گردید. سپس با استفاده از آنالیز رگرسیون چند متغیره در قالب نرمافزار SAS، بهترین ارتباط بین این مؤلفهها با تغییرات تراز آب زیرزمینی تعیین شد. نتایج نشان داد که در حالتی که تغییرات هیدروگراف آب زیرزمینی در گروه اول مدنظر قرار داشته باشد، تغییرات برداشت آب زیرزمینی با سهم 36.19 درصد، بیشترین تأثیر را بر تغییرات تراز آب زیرزمینی داشته است. پس از آن تغییرات جریان در رودخانه با سهم 28.60 درصد، متغیر اثرگذار مهم خواهد بود. از طرف دیگر، زمانی که هیدروگراف واحد تراز آب زیرزمینی برای گروه دوم در نظر گرفته شود، تغییرات جریان در رودخانه با سهم 34.64 درصد بیشترین اثر را بر تغییرات تراز آب زیرزمینی خواهد داشت و سهم پمپاژ آب به 28.53 خواهد رسید. | ||
کلیدواژهها | ||
آب زیرزمینی؛ تحلیل حساسیت؛ رگرسیون چندمتغیره؛ نجفآباد | ||
عنوان مقاله [English] | ||
Sensitivity analysis of the effect of climatic and non-climatic factors on groundwater level fluctuations (Case study: Najafabad plain) | ||
نویسندگان [English] | ||
Mohammad Javad Zareian | ||
Assistant Professor, Department of Water Resources Study and Research, Water Research Institute, Tehran, Iran. | ||
چکیده [English] | ||
This study was conducted to investigate the main factors affecting groundwater level fluctuations in the Najafabad plain. For this analysis, the 10-year period from 2004 to 2014 was considered and changes in temperature, precipitation, in river discharge between the beginning and end of the study area, groundwater withdrawal and in water flow in irrigation and drainage networks, were analyzed. In order to establish the relationship between each of the mentioned components with the changes in groundwater level in the study area, two general classifications were considered to determine the groundwater unit hydrograph. In the first classification, a groundwater unit hydrograph was prepared for all observation wells in the study area. In the second category, this hydrograph was prepared for observation wells around the river. Then, using multivariate regression analysis in SAS software, the best relationship between these components with changes in groundwater level was determined. Results showed that if the changes of groundwater unit hydrograph level are considered in the first group, changes in groundwater withdrawal with a share of 36.19%, had the maximum impact on changes in groundwater level. After that, the changes in the river flow with a share of 28.60%, had the greatest share in groundwater fluctuations. On the other hand, when the groundwater unit hydrograph is considered for the second group, changes in flow in the river with a share of 34.64% will have the maximum effect on changes in groundwater level and the share of groundwater withdrawal will reach to 28.53. | ||
کلیدواژهها [English] | ||
Groundwater, Multivariate Regression, Najafabad, Sensitivity Analysis | ||
مراجع | ||
Andersen, M. S., & Acworth, R. I. (2009). Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeology Journal, 17(8), 2005-2021. Binder, J. J. (1985). On the use of the multivariate regression model in event studies. Journal of Accounting Research, 1, 370-383. Brassel, K. E., & Reif, D. (1979). A procedure to generate Thiessen polygons. Geographical Analysis, 11(3), 289-303. Ebrahimi Varzane, S., Zarei, H., Tishehzan & Akhondali, A. M. (2019). Evaluation of groundwater-surface water interaction by using cluster analysis (case study: western part of Dezful-Andimeshk plain). Iran-Water Resources Research, 15(3), 246-257. (in Persian) Eslamian S. S., Gohari, S. A., Zareian, M. J., & Firoozfar A. (2012). Estimating Penman-Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: A case study. Arabian Journal for Science and Engineering, 37(4), 935-944. Faryabi, M., & Chitsazan, M. (2016). Evaluation of river–aquifer interaction using physicochemical parameters, Case Study: the north part of Dezful–Andimeshk district. Journal of Environmental Geology, 10(34), 101-115. (in Persian) Fleckenstein, J. H., Krause, S., Hannah, D. M., & Boano, F. (2010). Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Advances in Water Resources, 33(11), 1291-1295. Fleckenstein, J. H., Niswonger, R. G., & Fogg, G. E. (2006). River‐aquifer interactions, geologic heterogeneity, and low‐flow management. Groundwater, 44(6), 837-852. Guevara Ochoa, C., Medina Sierra, A., Vives, L., Zimmermann, E., & Bailey, R. (2020). Spatio‐temporal patterns of the interaction between groundwater and surface water in plains. Hydrological Processes, 34(6), 1371-1392. Gohari, A., Eslamian, S., Mirchi, A., Abedi-Koupaei, J., Massah Bavani, A., & Madani, K. (2013). Water transfer as a solution to water shortage: A fix that can Backfire. Journal of Hydrology, 491, 23-39. Islami, R., & Rahimi, A. (2019). Policymaking and water crisis in Iran. Quarterly Journal of the Macro and Strategic Policies, 7(3), 411-434. (n Persian) Jacobs, K. L., & Holway, J. M. (2004). Managing for sustainability in an arid climate: lessons learned from 20 years of groundwater management in Arizona, USA. Hydrogeology Journal, 12(1), 52-65. Kalbus, E., Reinstorf, F., & Schirmer, M. (2006). Measuring methods for groundwater, surface water and their interactions: a review. Hydrology and Earth System Sciences Discussions, 3(4), 1809-1850. Kebede, S., Charles, K., Godfrey, S., MacDonald, A., & Taylor, R. G. (2021). Regional-scale interactions between groundwater and surface water under changing aridity: evidence from the River Awash Basin, Ethiopia. Hydrological Sciences Journal, 66(3), 450-463. Liu, Y., & Sheng, Z. (2011). Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande. Journal of Hydrology, 409 (3-4), 710-723. Lu, C., Ji, K., Wang, W., Zhang, Y., Ealotswe, T. K., Qin, W., Lu, J., Liu, B., & Shu, L. (2021). Estimation of the interaction between groundwater and surface water based on flow routing using an improved nonlinear Muskingum-Cunge method. Water Resources Management, 35, 2649-2666. Mazaheri, M., & Abdolmanafi, N. S. (2017). Investigating the water crisis and its consequences in the country. Islamic parliament research center of the Islamic Republic of Iran. (in Persian) McCarthy, K. A., McFarland, W. D., Wilkinson, J. M., & White, L. D. (1992). The dynamic relationship between ground water and the Columbia River: using deuterium and oxygen-18 as tracers. Journal of Hydrology, 135(1-4), 1-12. Rotiroti, M., Zanotti, C., Fumagalli, L., Taviani, S., Stefania, G. A., Patelli, M., & Leoni, B. (2019). Multivariate statistical analysis supporting the hydrochemical characterization of groundwater and surface water: a case study in northern Italy. Rendiconti Online Societa Geologica Italiana, 47, 90-96. Saeedi Razavi, B., & Arab, A. (2020). Investigating the relationship between groundwater level and river and analyzing its daily flow coefficient. Hydrogeology, 5(1), 84-97. (in Persian) Saeedpanah, I., & Mohammadzade Roofchaee, S. (2018). Modelling the effect of water fall in the river level on unsteady groundwater flow in leaky aquifer by separation of variables. Iranian Journal of Ecohydrology, 5(3), 969-976. (in Persian) Seyedan, S. M., Kohansal, M. R., & Ghorbani, M. (2017). Achieving optimal path of extracting groundwater resources considering the side effects in Hamadan-Bahar plain. Journal of Watershed Management Research, 8(15), 191-201. (in Persian) Sykes, J. F., Wilson, J. L., & Andrews, R. W. (1985). Sensitivity analysis for steady state groundwater flow using adjoint operators. Water Resources Research, 21(3), 359-371. Zareian, M. J., & Eslamian, S. (2016). Variation of water resources indices in a changing climate. International Journal of Hydrology Science and Technology, 6(2), 173-187. Zareian, M. J. (2021). Optimal water allocation at different levels of climate change to minimize water shortage in arid regions (Case Study: Zayandeh-Rud River Basin, Iran). Journal of Hydro-environment Research, 35:, 13-30. Zimmerman, D. W. (1987). Comparative power of Student t test and Mann-Whitney U test for unequal sample sizes and variances. Journal of Experimental Education, 55(3), 171-174. | ||
آمار تعداد مشاهده مقاله: 406 تعداد دریافت فایل اصل مقاله: 260 |