تعداد نشریات | 161 |
تعداد شمارهها | 6,534 |
تعداد مقالات | 70,529 |
تعداد مشاهده مقاله | 124,145,675 |
تعداد دریافت فایل اصل مقاله | 97,250,906 |
روشی جدید برمبنای ترکیب روشهای آماری برای افزایش دقت نقشههای حساسیت به مخاطرات زمینلغزش (مطالعۀ موردی: استان مازندران) | ||
مدیریت مخاطرات محیطی | ||
دوره 8، شماره 2، شهریور 1400، صفحه 99-117 اصل مقاله (966.25 K) | ||
نوع مقاله: پژوهشی بنیادی | ||
شناسه دیجیتال (DOI): 10.22059/jhsci.2021.319366.629 | ||
نویسندگان | ||
سیدمحمدرضا اطیابی1؛ سعید نیازمردی* 2؛ رحیم علی عباسپور3 | ||
1دانشجوی کارشناسی ارشد سیستم اطلاعات مکانی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران | ||
2استادیار گروه مهندسی نقشهبرداری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران | ||
3دانشیار دانشکدۀ مهندسی نقشهبرداری و اطلاعات مکانی، پردیس دانشکدههای فنی، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
زمینلغزش یکی از خطرهای طبیعی است که در سراسر جهان رخ میدهد و هرساله سبب خسارت جانی و مالی زیادی میشود. کنترل و مدیریت زمینلغزش نقش مؤثری در کاهش خسارات آن دارد. اولین مرحله در مدیریت خطر زمینلغزش، شناسایی مناطق مستعد به زمینلغزش است که روشهای متفاوتی برای آن ارائه شده است. ارزیابی این روشها در حوزههای مختلف میتواند اطلاعات ارزشمندی در اختیار مدیران و تصمیمگیران قرار بدهد. در تحقیق حاضر، نقشۀ حساسیت به زمینلغزش برای استان مازندران با استفاده از روشهای شاخص آماری و فاکتور اطمینان تولید شده است. همچنین بهمنظور افزایش دقت، روشهای جدیدی با ترکیب روش شاخص آنتروپی با هر یک از روشهای شاخص آماری و ضریب اطمینان ارائه شدهاند. برای ارزیابی و مقایسۀ روشها از اطلاعات 585 زمینلغزش استفاده شده که در دورهای پنجاهساله در استان مازندران رخ دادهاند. پانزده عامل بهعنوان عوامل تأثیرگذار بر رخداد زمینلغزش در نظر گرفته شدهاند که خود به چهار دستۀ عوامل توپوگرافی، هیدرولوژی، محیطی و انسانساخت و زمینشناسی تقسیم شدهاند. نتایج بررسیها نشان دادند که از بین این عوامل، عوامل دستۀ توپوگرافی بیشترین تأثیر را در رخداد زمینلغزش دارند. علاوهبر این، مقایسۀ دقت نقشههای حساسیت به لغزش تولیدشده با استفاده از روشهای ترکیبی، با دقت حاصل از روشهای شاخص آماری و ضریب اطمینان افزایشی برابر 3 و 5/3 درصد براساس شاخص سطح زیر منحنی نشان دادند. | ||
کلیدواژهها | ||
استان مازندران؛ روشهای آماری؛ سطح زیر منحنی؛ عوامل مؤثر در زمینلغزش؛ نقشۀ حساسیت به زمینلغزش | ||
عنوان مقاله [English] | ||
A novel method based on combing statistical methods for improving the accuracy of landslide susceptibility maps (case study: Mazandaran province) | ||
نویسندگان [English] | ||
Sayed Mohammadreza Atyabi1؛ Saeid Niazmardi2؛ Rahim Ali Abbaspour3 | ||
1Faculty of Civil Engineering and survey Graduate University of Advanced Technology of kerman, iran | ||
2department of surveying Engineering,,, Faculty of civil and surveying engineering,, graduate university of advanced technology, Kerman, Iran | ||
3Assistant Professor, GIS Department, School of surveying and Geospatial engineering, Engineering College, University of Tehran | ||
چکیده [English] | ||
Landslide is one of the natural hazards which occur worldwide and causes loss of life and property every year. Landslide risk control and management have a vital role in reducing its damage. The first step of landslide risk management is to identify areas prone to landslides, for which different methods have been proposed. Evaluating these methods can provide valuable information to managers and decision-makers. In the present study, the landslide susceptibility map of Mazandaran province was produced using statistical index and confidence factor methods. Besides, to increase the accuracy of the maps, new methods by combining the index of entropy method with each one of statistical index and confidence factor methods have been proposed. To evaluate and compare the methods, 585 landslide data that occurred in a period of 50 years in Mazandaran province have been used. Fifteen conditioning factors have been considered to have the most effects of landslide occurrence, which were divided into four categories: topographic, hydrological, environmental and man-made, and geological. The results showed that topographic factors, among the others, have the most impact on landslide occurrence. In addition, comparing the accuracy of susceptibility maps generated using hybrid methods with SI and CF methods showed an increase of 3% and 3.5% (based on urea under curve index). | ||
کلیدواژهها [English] | ||
Landslide susceptibility map, statistical methods, conditioning factors of landslide, Area under the curve, Mazandaran province | ||
مراجع | ||
[1] دلسوز، سوسن؛ محمودی، طیبه؛ رامشت، محمدحسین؛ و انتظاری، مژگان (1393). «مفهوم زمان و تکنیکهای پیشبینی مخاطرات طبیعی»، مدیریت مخاطرات محیطی، 1(1)، ص 109- 97.
[2] صدوق ونینی، حسن؛ ثروتی، محمدرضا؛ نصرتی، کاظم؛ اسدی، میترا؛ و قربانی، محمد صدیق، (1394). «پهنهبندی لغزش زمین در منطقۀ کاشتر کامیاران برای کاهش مخاطرات»، مدیریت مخاطرات محیطی، 2(1)، ص 116-105.
[3] Anis, Zorgati; Wissem, Gallala; Vali, Vakhshoori; Smida, Habib; & Essghaier, Gaied Mohamed, (2019). “GIS-based landslide susceptibility mapping using bivariate statistical methods in North-western Tunisia”, Open Geosciences, 11,(1), pp 708-726, doi: DOI:10.1515/geo-2019-0056.
[4] Azareh, Ali; Rahmati, Omid; Rafiei-Sardooi, Elham; Sankey, Joel B; Lee, Saro; Shahabi, Himan; & Ahmad, Baharin Bin (2019). “Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models”, Science of the Total Environment, 655,(pp 684-696, doi: DOI:10.1016/j.scitotenv.2018.11.235.
[5] Basu, Tirthankar & Pal, Swades, (2019). “A GIS-based factor clustering and landslide susceptibility analysis using AHP for Gish River Basin, India”, Environment, Development and Sustainability, pp: 1-33, doi: DOI: 10.1007/s10668-019-00406-4.
[6] Bui, Dieu Tien; Pradhan, Biswajeet; Lofman, Owe; Revhaug, Inge; & Dick, Oystein B, (2012). “Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS”, Computers & Geosciences, 45, pp: 199-211, doi: DOI:10.1016/j.cageo.2011.10.031.
[7] Chen, Wei; Shahabi, Himan; Zhang, Shuai; Khosravi, Khabat; Shirzadi, Ataollah; Chapi, Kamran; Pham, Binh Thai; Zhang, Tingyu; Zhang, Lingyu; & Chai, Huichan, (2018). “Landslide susceptibility modeling based on gis and novel bagging-based kernel logistic regression”, Applied Sciences, 8,(12), p. 2540, doi: DOI:10.3390/app8122540
[8] Chen, Wei; Shahabi, Himan; Shirzadi, Ataollah; Hong, Haoyuan; Akgun, Aykut; Tian, Yingying; Liu, Junzhi; Zhu, A-Xing; & Li, Shaojun, (2019). “Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling”, Bulletin of Engineering Geology and the Environment, 78,(6), pp: 4397-4419.
[9] Chen, Xi and Chen, Wei, (2021). “GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods”, Catena, 196, p. 104833.
[10] Dahal, Ranjan Kumar; Hasegawa, Shuichi; Nonomura, Atsuko; Yamanaka, Minoru; Dhakal, Santosh; and Paudyal, Pradeep, (2008). “Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence”, Geomorphology, 102,(3-4), pp: 496-510, doi: DOI:10.1016/j.geomorph.2008.05.041.
[11] Devkota, Krishna Chandra; Regmi, Amar Deep; Pourghasemi, Hamid Reza; Yoshida, Kohki; Pradhan, Biswajeet; Ryu, In Chang; Dhital, Megh Raj; and Althuwaynee, Omar F, (2013). “Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya”, Natural hazards, 65,(1), pp: 135-165, doi: DOI:10.1007/s11069-012-0347-6.
[12] Feizizadeh, Bakhtiar; Roodposhti, Majid Shadman; Blaschke, Thomas; & Aryal, Jagannath, (2017). “Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping”, Arabian Journal of Geosciences, 10,(5), p. 122, doi: DOI 10.1007/s12517-017-2918-z.
[13] Gentilucci, Matteo; Materazzi, Marco; & Pambianchi, Gilberto, (2021). “Statistical Analysis of Landslide Susceptibility, Macerata Province (Central Italy)”, Hydrology, 8,(1), p. 5.
[14] Jaafari, A; Najafi, A; Pourghasemi, HR; Rezaeian, J; & Sattarian, A, (2014). “GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran”, International Journal of Environmental Science and Technology, 11,(4), pp: 909-926, doi: DOI: 10.1007/s13762-013-0464-0.
[15] Juliev, Mukhiddin; Mergili, Martin; Mondal, Ismail; Nurtaev, Bakhtiar; Pulatov, Alim; & Hübl, Johannes, (2019). “Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan”, Science of the total environment, 653, pp: 801-814, doi: DOI:10.1016/j.scitotenv.2018.10.431.
[16] Lai, Jhe-Syuan & Tsai, Fuan, (2019). “Improving GIS-based landslide susceptibility assessments with multi-temporal remote sensing and machine learning”, Sensors, 19,(17), p. 3717, doi: DOI:10.3390/s19173717.
[17] Luo, Xiangang; Lin, Feikai; Zhu, Shuang; Yu, Mengliang; Zhang, Zhuo; Meng, Lingsheng; & Peng, Jing, (2019). “Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors”, PloS one, 14,(4), doi: DOI:10.1371/journal.pone.0215134.
[18] Mahdadi, Fatna; Boumezbeur, Abederrahmane; Hadji, Riheb; Kanungo, Debi Prasanna; & Zahri, Farid, (2018). “GIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras province, NE Algeria”, Arabian Journal of Geosciences, 11,(17), p. 476, doi: DOI: 10.1007/s12517-018-3770-5.
[19] Ngo, Phuong Thao Thi; Panahi, Mahdi; Khosravi, Khabat; Ghorbanzadeh, Omid; Kariminejad, Narges; Cerda, Artemi; & Lee, Saro, (2021). “Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran”, Geoscience Frontiers, 12,(2), pp: 505-519.
[20] Nohani, Ebrahim; Moharrami, Meisam; Sharafi, Samira; Khosravi, Khabat; Pradhan, Biswajeet; Pham, Binh Thai; Lee, Saro; & M Melesse, Assefa, (2019). “Landslide susceptibility mapping using different GIS-based bivariate models”, Water, 11,(7), p. 1402.
[21] Nourani, Vahid; Pradhan, Biswajeet; Ghaffari, Hamid; & Sharifi, Seyed Saber, (2014). “Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models”, Natural hazards, 71,(1), pp: 523-547.
[22] Pham, Binh Thai; Prakash, Indra; Singh, Sushant K; Shirzadi, Ataollah; Shahabi, Himan; & Bui, Dieu Tien, (2019). “Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches”, Catena, 175, pp: 203-218, /j.catena.2018.12.018.
[23] Pham, Binh Thai; Bui, Dieu Tien; Pourghasemi, Hamid Reza; Indra, Prakash; & Dholakia, MB. (2017). “Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods”, Theoretical and Applied Climatology, 128,(1-2), pp: 255-273, doi: DOI: 10.1007/s00704-015-1702-9.
[24] Pourghasemi, Hamid Reza; Pradhan, Biswajeet; Gokceoglu, Candan; Mohammadi, Majid; & Moradi, Hamid Reza, (2013). “Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran”, Arabian Journal of Geosciences, 6,(7), pp: 2351-2365, doi: DOI: 10.1007/s12517-012-0532-7.
[25] Pourghasemi, Hamid Reza & Kerle, Norman (2016). “Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran”, Environmental earth sciences, 75,(3), p. 185, doi: DOI: 10.1007/s12665-015-4950-1.
[26] Pourghasemi, Hamid Reza; Jirandeh, Abbas Goli; Pradhan, Biswajeet; Xu, Chong; & Gokceoglu, Candan, (2013). “Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran”, Journal of Earth System Science, 122,(2), pp: 349-369, doi: DOI: 10.1007/s12040-013.
[27] Pourghasemi, HR; Moradi, HR; and Aghda, SM Fatemi, (2013). “Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances”, Natural hazards, 69,(1), pp: 749-779, doi: DOI: 10.1007/s11069-013-0728-5.
[28] Razavizadeh, Samaneh; Solaimani, Karim; Massironi, Matteo; and Kavian, Ataollah, (2017). “Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran”, Environmental Earth Sciences, 76,(14), p. 499, doi: DOI: 10.1007/s12665-017-68.
[29] Regmi, Amar Deep; Devkota, Krishna Chandra; Yoshida, Kohki; Pradhan, Biswajeet; Pourghasemi, Hamid Reza; Kumamoto, Takashi; and Akgun, Aykut, (2014). “Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya”, Arabian Journal of Geosciences, (2),7, pp: 725-742, doi: DOI: 10.1007/s12517-012-08.
[30] Shirzadi, Ataollah; Bui, Dieu Tien; Pham, Binh Thai; Solaimani, Karim; Chapi, Kamran; Kavian, Ataollah; Shahabi, Himan; and Revhaug, Inge, (2017). “Shallow landslide susceptibility assessment using a novel hybrid intelligence approach”, Environmental Earth Sciences, 76,(2), p. 60.
[31] Vahidnia, Mohammad H; Alesheikh, Ali A; Alimohammadi, Abbas; and Hosseinali, Farhad, (2010). “A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping”, Computers & Geosciences, 36,(9), pp: 1101-1114, doi: DOI:10.1016/j.cageo.2010.04.004.
[32] Van Westen, CJ, (1997). “Statistical landslide hazard analysis”, ILWIS, 2, pp: 73-84.
[33] Wang, Qiqing & Li, Wenping, (2017). “A GIS-based comparative evaluation of analytical hierarchy process and frequency ratio models for landslide susceptibility mapping”, Physical Geography, 38,(4), pp: 318-337, doi: DOI:10.1080/02723646.2017.1294522.
[34] Wu, Zhiyong; Wu, Yanli; Yang, Yitian; Chen, Fuwei; Zhang, Na; Ke, Yutian; and Li, Wenping, (2017). “A comparative study on the landslide susceptibility mapping using logistic regression and statistical index models”, Arabian Journal of Geosciences, 10,(8), p. 187, doi: DOI: 10.1007/s12517-017-2961-9.
[35] Xiao, Ting; Yin, Kunlong; Yao, Tianlu; & Liu, Shuhao, (2019). “Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China”, Acta Geochimica, 38,(5), pp: 654-669, doi: DOI: 10.1007/s11631-019-00341-1.
[36] Yufeng, Shi & Fengxiang, Jin, “Landslide stability analysis based on generalized information entropy”, in 2009 international conference on environmental science and information application technology, 2009, vol. 2: IEEE, pp: 83-85, doi: DOI:10.1109/ESIAT.2009.258.
[37] Zhao, Xia & Chen, Wei, (2020). “Gis-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques”, Applied Sciences, 10,(1), p. 16, doi: DOI:10.3390/app10010016. | ||
آمار تعداد مشاهده مقاله: 412 تعداد دریافت فایل اصل مقاله: 356 |