تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,099,145 |
تعداد دریافت فایل اصل مقاله | 97,206,745 |
Biosorption of Reactive Red 120 Dye from Aqueous Solutions by using Mahagoni (Swietenia mahagoni) Wood and Bark Charcoal: Equilibrium, and Kinetic Studies | ||
Pollution | ||
دوره 7، شماره 4، دی 2021، صفحه 905-921 اصل مقاله (545.81 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2021.325135.1110 | ||
نویسندگان | ||
Tapos Kumar Chakraborty* 1؛ Gopal Chandra Ghosh2؛ Mst. Nowshin Akter2؛ Keya Adhikary2؛ Md. Shahnul Islam2؛ Prianka Ghosh1؛ Samina Zaman2؛ Ahsan Habib2؛ A. H. M. Enamul Kabir2 | ||
1Department of Environmental Science and Technology, Jashore University of Science and Technology, P.O.Box 7408, Jashore, Bangladesh. | ||
2Department of Environmental Science and Technology, Jashore University of Science and Technology, P.O. Box 7408, Jashore, Bangladesh. | ||
چکیده | ||
This study analyzed the potential use of Mahagoni wood charcoal (MWC) and Mahagoni bark charcoal (MBC) as biosorbent for reactive red 120 (RR 120) dye removal from aqueous solutions. The effect of different operating parameters such as contact time (1–210 min), pH (3–11), adsorbent dose (1–20 g/L), and initial RR 120 concentration (5–70 mg/L) on adsorption processes was studied under batch adsorption experiments. The maximum removal of RR 120 by MWC (78%) and MBC (88%) was achieved when the optimum conditions were initial RR 120 concentration (5 mg/L), pH (3), adsorbents dose (10 g/L) and equilibrium contact time (150 min). The RR 120 adsorption data of MWC and MBC were better described by the Langmuir and Freundlich isotherm models, respectively. The MWC and MBC showed maximum adsorption capacities of 3.806 and 5.402 mg/g, respectively. Kinetic adsorption data of all adsorbents (MWC and MBC) followed the pseudo-second-order model and this adsorption process was controlled by chemisorption with multi-step diffusion. A lower desorption rate advocated that both strong and weak binding forces could exist between RR 120 molecules and adsorbents. The study results revealed that the utilization of either MWC and or MBC as an adsorbent for treating RR 120 is effective and environmentally friendly. | ||
کلیدواژهها | ||
Adsorption efficiency؛ adsorbent؛ anionic dye؛ biomass | ||
مراجع | ||
Abdelwahab, O., Nemr, A. E., Sikaily, A. E. and Khaled, A. (2005). Use of rice husk for adsorption of direct dyes from aqueous solution: a case study of Direct F. Scarlet. Egypt. J. Aquat. Res., 31(1); 1-11.
Abbas, R. A., Farhan, A. A. R., Al Ani, H. N. A. and Nechifor, A. C. (2019). Determination of the optimal condition of direct blue dye removal from aqueous solution using eggshell. Rev. Chim., 70(4); 1108-1113.
Anastopoulos, I., Pashalidis, I., Hosseini-Bandegharaei, A., Giannakoudakis, D. A., Robalds, A., Usman, M., Escudero L. B., Zhou, Y., Colmenares,J. C., Núñez-Delgado, A. and Lima, É. C. (2019). Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. J. Mol. Liq., 295; 111684.
Ahmad, A. A., Hameed, B. H. and Aziz, N. (2007). Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. J. Hazard. Mater., 141(1); 70-76.
Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L. and Jiang, J. (2011). Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J. Hazard. Mater., 198; 282-290.
Arami, M., Limaee, N. Y. and Mahmoodi, N. M. (2008). Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent. Chem. Eng. J., 139(1); 2-10.
Arica, M. Y. and Bayramoğlu, G. (2007). Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. J. Hazard. Mater., 149(2); 499-507.
Bansal, M., Singh, D. and Garg, V. K. (2009). A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons. J. Hazard. Mater., 171(1-3); 83-92.
Çelekli, A., Ilgun, G. and Bozkurt, H. (2012). Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Chara contraria. Chem. Eng. J., 119; 228-235.
Çelekli, A., Tanrıverdi, B. and Bozkurt, H. (2011). Predictive modeling of removal of Lanaset Red G on Chara contraria; kinetic, equilibrium, and thermodynamic studies. Chem. Eng. J., 169(1-3); 166-172.
Chahm, T., Martins, B. A. and Rodrigues, C. A. (2018). Adsorption of methylene blue and crystal violet on low-cost adsorbent: waste fruits of Rapanea ferruginea (ethanol-treated and H2SO4-treated). Environ. Earth Sci., 77(13); 508.
Chakraborty, T. K., Islam, M. S., Zaman, S., Kabir, A. H. M. E. and Ghosh, G. C. (2020). Jute (Corchorus olitorius) stick charcoal as a low-cost adsorbent for the removal of methylene blue dye from aqueous solution. SN Appl. Sci., 2; 765.
Chen, H., Zhao, J., Wu, J. and Dai, G. (2011). Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. J. Hazard. Mater., 192; 246–254.
Dehghani, M. H., Dehghan, A. and Najafpoor, A. (2017). Removing Reactive Red 120 and 196 using chitosan/zeolite composite from aqueous solutions: Kinetics, isotherms, and process optimization. J. Ind. Eng. Chem., 51; 185-195.
Deng, H., Lu, J., Li, G., Zhang, G. and Wang X. (2011). Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem. Eng. J., 172(1); 326-334.
Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., Shengshu, Y., Yue, S., Kexin, Z., Jiayi, X., Wenlei, Z., Zhaoyue, H., Yahan, Y., Yuewen, G., Yanjun, C., Xu, Z., Feng, G. and Zhang, Y. (2018). Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere., 211; 235-253.
Duran, C., Ozdes, D., Gundogdu, A. and Senturk, H. B. (2011). Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. J. Chem. Eng. Data, 56(5); 2136-2147.
Eren, Z. and Acar, F. N. (2006). Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination, 194(1-3); 1-10.
Freundlich, H. M. F. (1906). Over the adsorption in solution. J. Phys. Chem., 57; 358-471.
Ghosh, G. C., Chakraborty, T. K., Zaman, S., Nahar, M. N. and Kabir, A. H. M. E. (2020). Removal of Methyl Orange Dye from Aqueous Solution by a Low-Cost Activated Carbon Prepared from Mahagoni (Swietenia mahagoni) Bark. Pollution, 6(1); 171-184.
Ghosh, G. C., Samina, Z., & Chakraborty, T. K. (2018). Adsorptive removal of Cr (VI) from aqueous solution using rice husk and rice husk ash. Desalin. Water Treat., 130; 151-160.
Gupta, V. K., Pathania, D., Agarwal, S. and Singh, P. (2012). Adsorptional photocatalytic degradation of methylene blue onto pectin-CuSnanocomposite under solar light. J. Hazard. Mater., 243; 179-186.
Hasan, M. B. and Hammood, Z. A. (2018). Wastewater Remediation via Modified Activated Carbon: A Review. Pollution, 4(4); 707-723.
Ho, Y. S. and McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res., 34(3); 735-742.
Ip, A. W. M., Barford, J. P. and McKay, G. (2009). Reactive Black dye adsorption/desorption onto different adsorbents: effect of salt, surface chemistry, pore size and surface area. J. Colloid. Interface Sci., 337(1); 32-38.
Isah, U., Abdulraheem, G., Bala, S., Muhammad, S. and Abdullahi, M. (2015). Kinetics, equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon. Int. Biodeter. Biodegr., 102; 265-273.
Jain, M., Garg, V. K. and Kadirvelu, K. (2010). Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. J. Environ., 99(4); 949-957.
Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N. and Pattabhi, S. (2003). Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol., 87(1); 129-132.
Khattri, S. D. and Singh, M. K. (2000). Colour removal from synthetic dye wastewater using a bioadsorbent. Water Air Soil Pollut., 120(3-4); 283-294.
Kumar, K. V., Ramamurthi, V. and Sivanesan, S. (2005). Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J. Colloid. Interface Sci., 284(1); 14-21.
Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar., 24(4); 1-39.
Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc., 39(9);1848-1906.
Mahmoodi, N. M., Hayati, B., Arami, M. and Lan, C. (2011). Adsorption of textile dyes on Pine cone from colored wastewater: kinetic, equilibrium and thermodynamic studies. Desalination, 268(1-3); 117-125.
Malakootian, M., Mansooria, H. J., Hosseini, A. and Khanjani, N. (2015). Evaluating the efficacy of alumina/carbon nanotube hybrid adsorbents in removing Azo Reactive Red 198 and Blue 19 dyes from aqueous solutions. Process Saf. Environ., 96; 125-137.
Mubarak, N. S. A., Jawad, A. H. and Nawawi, W. I. (2017). Equilibrium, kinetic and thermodynamic studies of Reactive Red 120 dye adsorption by chitosan beads from aqueous solution. Energ. Ecol. Environ., 2(1); 85-93.
Munagapati, V. S., Yarramuthi, V. and Kim, D. S. (2017). Methyl orange removal from aqueous solution using goethite, chitosan beads and goethite impregnated with chitosan beads. J. Mol. Liquids., 240; 329-339.
Munagapati, V. S, Yarramuthi, V., Kim, Y., Lee, K. M. and Kim, D. S. (2018). Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicol. Environ., 148; 601-607.
Naveen, N., Saravanan, P., Baskar, G. and Renganathan, S. (2011). Equilibrium and kinetic modeling on the removal of Reactive Red 120 using positively charged Hydrilla verticillata. J. Taiwan Inst. Chem. E., 42(3); 463-469.
Ngah, W. S. W. and Musa, A. (1998). Adsorption of humic acid onto chitin and chitosan. J. Appl. Polym. Sci., 69(12); 2305-2310.
Panda, G. C., Das, S. K. and Guha, A. K. (2009). Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution. J. Hazard. Mater., 164(1); 374-379.
Qian, W. C., Luo, X. P., Wang, X., Guo, M. and Li, B. (2018). Removal of methylene blue from aqueous solution by modified bamboo hydrochar. Ecotoxicol. Environ. Saf., 157; 300-306.
Robinson, T., McMullan, G., Marchant, R. and Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77(3); 247-255.
Rusmin, R., Sarkar, B., Liu, Y., McClure, S. and Naidu, R. (2015). Structural evolution of chitosan-palygorskite composites and removal of aqueous lead by composite beads. Appl. Surf. Sci., 353; 363-375.
Rápó, E., Szép, R., Keresztesi, Á., Suciu, M. and Tonk, S. (2018). Adsorptive removal of cationic and anionic dyes from aqueous solutions by using eggshell household waste as biosorbent. Acta Chim. Slov., 65(3); 709-717.
Shirmardi, M., Mesdaghinia, A., Mahvi, A. H., Nasseri, S. and Nabizadeh, R. (2012). Kinetics and equilibrium studies on adsorption of acid red 18 (Azo-Dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution. J. Chem., 9(4); 2371-2383.
Sismanoglu, T., Kismir, Y. and Karakus, S. (2010). Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite. J. Hazard. Mater.,184(1-3); 164-169.
Srikantan, C., Suraishkumar, G. K. and Srivastava, S. (2018). Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots. Bioresour. Technol., 257; 84-91.
Subbaiah, M. V. and Kim, D. S. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicol. Environ. Safety., 128; 109-117.
Subramani, S. E. and Thinakaran, N. (2017). Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Saf. Environ. Protec., 106; 1-10.
Weber, W. J. and Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div., 89(2); 31-60.
Yagub, M. T., Sen, T. K., Afroze, S. and Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid. Interface Sci., 209; 172-184.
Yaman, M. and Demirel, M. H. (2020). Synthesis and characterization of activated carbon from biowaste-walnut shell and application to removal of uranium from waste. Pollution., 6(4); 935-944.
Zhang, Z., O’Hara, I. M., Kent, G. A. and Doherty, W. O. (2013). Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse. Ind. Crop. Prod., 42; 41-49.
Zheng, L., Wang, C., Shu, Y., Yan, X. and Li, L. (2015). Utilization of diatomite/chitosan-Fe (III) composite for the removal of anionic azo dyes from wastewater: equilibrium, kinetics and thermodynamics. Colloids Surf. A: Physicochem Eng. Asp., 468; 129-139.
Zhu, X., Liu, Y., Qian, F., Zhou, C., Zhang, S. and Chen, J. (2015). Role of hydrochar propertieson the porosity of hydrochar-based porous carbon for their sustainable application. ACS Sustain. Chem. Eng., 3(5); 833-840. | ||
آمار تعداد مشاهده مقاله: 733 تعداد دریافت فایل اصل مقاله: 605 |