تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,034 |
تعداد دریافت فایل اصل مقاله | 97,216,867 |
بررسی مدیریت آب و کود نیتروژن بر عملکرد واجزای عملکرد گیاه کینوا (Chenopodium quinoa Willd.) در منطقه باجگاه (استان فارس) | ||
تحقیقات آب و خاک ایران | ||
دوره 52، شماره 8، آبان 1400، صفحه 2049-2059 اصل مقاله (994.09 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2021.320412.668913 | ||
نویسندگان | ||
مریم بهرامی؛ رضوان طالب نژاد* ؛ علیرضا سپاسخواه * | ||
بخش مهندسی آب و مرکز مطالعات خشکسالی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران | ||
چکیده | ||
امروزه استفاده موثر از منابع محدود آب وخاک برای کاشت گیاه جدید مقاوم به تنشهای محیطی، مانند کینوا، درکشاورزی مورد توجه قرارگرفتهاست. به منظور بررسی برهمکنش سطوح مختلف آب آبیاری و کود نیتروژن بر عملکرد و اجزا عملکرد کینوا رقم Titicaca، در اسفند1396 آزمایشی مزرعهای به مدت چهار ماه در منطقه باجگاه استان فارس انجام شد. آزمایش فاکتوریل در قالب طرح بلوکهای کامل تصادفی در سه تکرار با 12 تیمار اجرا شد. فاکتورهای آزمایش، کود نیتروژن درچهار سطح کودی صفر، 125، 250 و 375 کیلوگرم نیتروژن درهکتار وآب آبیاری در سه سطح آبیاری کامل، 75 درصد آبیاری کامل و50 درصد آبیاری کامل بود. پس از آمادهسازی بستر کشت و عملیات خاکورزی، بذر کینوا با تراکم 20 گیاه در مترمربع کشت شد. تیمارهای آبیاری پس از استقرار کامل گیاه و به روش آبیاری کرتی اعمال شد. کود نیتروژن، به صورت سرک، در دو مرحله سبزینگی و پرکردن دانه به مزرعه داده شد. کاهش آب آبیاری به میزان 25 درصد، تفاوت معنی داری در عملکرد دانه در سطوح کودی صفر، 125 و250 کیلوگرم نیتروژن درهکتارایجاد نکرد. افزایش سطوح کودی از 250 به kg N ha-1 375 در شرایط کم آبیاری در سطوح 75 و 50 درصد آبیاری کامل (600 و 485mm) باعث تفاوت معنیدار در عملکرد دانه و ماده خشک کل گیاه کینوا نگردید. به طورکلی تیمار آبیاری قابل توصیه و حد بهینه کود نیتروژن کاربردی در منطقه مورد مطالعه، برای گیاه کینوا با در نظر داشتن عملکرد دانه، ماده خشک کل، شاخص برداشت، وزن هزاردانه و بهرهوری آب، کم آبیاری 75 درصد آبیاری کامل و کود نیتروژن kg N ha-1 250 میباشد. همچنین با مدیریت آب و کود ذکر شده، حد آستانه شاخص کلروفیل برگ معادل 55 تعیین شد. | ||
کلیدواژهها | ||
هالوفیت؛ کلروفیل برگ؛ کمآبیاری؛ بهرهوری آب | ||
عنوان مقاله [English] | ||
Investigation of Water and Nitrogen Management on yield and yield components of Quinoa (Chenopodium quinoa Willd.) in Bajgah (Fars Province) | ||
نویسندگان [English] | ||
Maryam Bahrami؛ Rezvan Tallebnejad؛ Ali Reza Sepaskhah | ||
Water Engineering Department and Drought Research Center, Faculty of Agriculture, Shiraz University, Shiraz, Iran | ||
چکیده [English] | ||
Todays in agriculture, the effective use of limited soil and water resources and cultivation of new crops, resistant to environmental challenges, such as quinoa have been considered. In order to investigate the interaction effect of different levels of irrigation water and nitrogen fertilizer on yield and yield components of quinoa (cv. Titicaca), a field experiment was conducted on March 2017 during four months at Shiraz University in the Bajgah area of Fars province. A factorial experiment was conducted in a randomized complete block design with twelve treatments and three replications. Experimental Factors include: Nitrogen (N) fertilizer treatments in four levels of zero, 125, 250, 375 kg N ha-1 and the irrigation water strategies in three levels of full irrigation (FI), 75% and 50% full irrigation (0.75FI and 0.5FI. After tillage operations, quinoa seeds planted with a density of 20 plants per square meter. After plant establishment, irrigation treatments applied with basin irrigation method. Nitrogen fertilizer was given to the field in two steps of vegetation and grain filling.). Reduction Irrigation level up to 25% had no significant effect on seed yield in zero, 125 to 250 kg N ha-1 nitrogen fertilizer application levels. Increasing nitrogen fertilizer application levels from 250 to 375 kg N ha-1 under deficit irrigation (0.75FI and 0.5FI) did not make a significant difference in grain yield and the total dry matter of quinoa. Generally, the recommended irrigation regime and optimum nitrogen fertilizer application rate in the study area (Bajgah) for quinoa, based on the yield, total dry matter, harvest index, 1000-seed weight, water productivity were 0.75FI and 250 kg N ha-1 nitrogen fertilizer. Moreover, the chlorophyll index (SPAD) threshold value was 55 for the optimum nitrogen fertilizer application rate. | ||
کلیدواژهها [English] | ||
Halophyte, Leaf chlorophyll, Deficit irrigation, Water productivity | ||
مراجع | ||
Adolf, V. I., Shabala, S., Andersen, M. N., Razzaghi, F., & Jacobsen, S. E. (2012). Varietal differences of quinoa’s tolerance to saline conditions. Plant and Soil, 357(1-2), 117-129. Alandia, G., Jacobsen, S. E., Kyvsgaard, N. C., Condori, B., & Liu, F. (2016). Nitrogen sustains seed yield of Quinoa under intermediate drought. Journal of Agronomy and Crop Science, 202(4), 281-291. Alizadeh-Zoaj, F., & Sepaskhah, A. R. (2016). Quinoa yield response to deficit irrigation and nitrogen levels in presence of saline shallow groundwater. International Quinoa Conference 2016, (pp. 45-46). Dubai: Dubai, UAE. Alvar-Beltrán, J., Dao, A., Marta, A. D., Saturnin, C., Casini, P., Sanou, J., & Orlandini, S. (2019). Effect of Drought, Nitrogen Fertilization, Temperature, and Photoperiodicity on Quinoa Plant Growth and Development in the Sahel. Agronomy, 9(10), 607. Aroni janco, G. E. N. A. R. O. (1991). Fertilizacion quimica en el cultivo de quinua en condiciones del altiplano sud comunidad chacala provincia quijarro (Doctoral dissertation, Universidad Autónoma Tomás Frías). Basra, S. M., Iqbal, S., & Afzal, I. (2014). Evaluating the response of nitrogen application on growth, development and yield of quinoa genotypes. International Journal of Agriculture & Biology, 16(5), 886-892. English, M. (1990). Deficit irrigation. I: Analytical framework. Journal of Irrigation and Drainage Engineering, 116(3), 399-412. Erley,G.S., Kaul,H.P., Kruse, M., & Aufhammer, W. (2005). Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. European Journal of Agronomy, 22(1), 95-100. Garcia, M., Raes, D., & Jacobsen, S. E. (2003). Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands. Agricultural Water Management, 60(2), 119-134. Geerts, S., Raes, D., Garcia, M., Condori, O., Mamani, J., Miranda, R., Cusicanqui, J., Taboada, C., Yucra, E., & Vacher, J. (2008a). Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa Willd.) in the Southern Bolivian Altiplano?. Agricultural Water Management, 95(8), 909-917. Geerts, S., Raes, D., Garcia, M., Del Castillo, C., & Buytaert, W. (2006). Agro-climatic suitability mapping for crop production in the Bolivian Altiplano: A case study for quinoa. Agricultural and Forest Meteorology, 139(3-4), 399-412. Geerts, S., Raes, D., Garcia, M., Taboada, C., Miranda, R., Cusicanqui, J., Mhizha, T. & Vacher, J. (2009). Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano. Agricultural Water Management, 96(11), 1652-1658. Geren, H. (2015). Effects of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under Mediterranean climatic conditions. Turkish Journal of Fields Crops, 20(1), 59-64. Gomaa, E. F. (2013). Effect of nitrogen, phosphorus and biofertilizers on quinoa plant (Chenopodium quinoa). Journal of Applied Sciences Research, 9(8), 5210-5222. Hirich, A., Choukr‐Allah, R., & Jacobsen, S. E. (2014a). Deficit irrigation and organic compost improve growth and yield of quinoa and pea. Journal of Agronomy and Crop Science, 200(5), 390-398. Hirich, A., Choukr‐Allah, R., & Jacobsen, S. E. (2014b). Quinoa in Morocco–effect of sowing dates on development and yield. Journal of Agronomy and Crop Science, 200(5), 371-377. Jacobsen, S. E. (2003). The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food reviews international, 19(1-2), 167-177. Jacobsen, S. E. (2017). The scope for adaptation of quinoa in Northern Latitudes of Europe. Journal of Agronomy and Crop Science, 203(6), 603-613. Jacobsen, S. E., Monteros, C., Christiansen, J. L., Bravo, L. A., Corcuera, L. J., & Mujica, A. (2005). Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European Journal of Agronomy, 22(2), 131-139. Kakabouki, I., Bilalis, D., Karkanis, A., Zervas, G., & Hela, D. (2014). Effects of fertilization and tillage system on growth and crude protein content of quinoa (Chenopodium quinoa Willd.): An alternative forage crop. Emirates Journal of Food and Agriculture, 26(1), 18-24. Kaya, Ç. I., Yazar, A., & Sezen, S. M. (2015). SALTMED model performance on simulation of soil moisture and crop yield for quinoa irrigated using different irrigation systems, irrigation strategies and water qualities in Turkey. Agriculture and Agricultural Science Procedia, 4, 108-118. Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural Water Management, 57(3), 175-206. Piva, G.; Brasse, C.; & Mehinagic, E. 2015. In State of the Art Report of Quinoa in the World in 2013. Chapter 6.1.2: Quinoa D’Anjou: The beginning of a French quinoa sector. pp. 447-453. Rome: FAO and CIRAD. Razzaghi, F., & Sepaskhah, A. R. (2012). Calibration and validation of four common ET0 estimation equations by lysimeter data in a semi-arid environment. Archives of Agronomy and Soil Science, 58(3), 303-319. Razzaghi, F., Henriksen, S., Naghdyzadegan, J. M., Andersen, M. N., & Jacobsen, S. E. (2016). Potential of quinoa production in humid and dry regions under different irrigation and soil conditions: Denmark and Iran. International Quinoa Conference 2016, (pp. 42). Dubai: Dubai, UAE. Razzaghi, F., Plauborg, F., Jacobsen, S. E., Jensen, C. R., & Andersen, M. N. (2012). Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agricultural Water Management, 109, 20-29. Repo-Carrasco, R., Espinoza, C., & Jacobsen, S. E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International, 19(1-2), 179-189. Riccardi, M., Pulvento, C., Lavini, A., d'Andria, R., & Jacobsen, S. E. (2014). Growth and ionic content of quinoa under saline irrigation. Journal of Agronomy and Crop Science, 200(4), 246-260. Rojas, W. 2003. Multivariate Analysis of Genetic Diversity of Bolivian Quinoa Germplasm. Food Reviews International 19, 9-23. Ruiz, K. B., Biondi, S., Martínez, E. A., Orsini, F., Antognoni, F., & Jacobsen, S. E. (2016). Quinoa–a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 150(2), 357-371. Scheben, A., Yuan, Y., & Edwards, D. (2016). Advances in genomics for adapting crops to climate change. Current Plant Biology, 6, 2-10. Sezen, S. M., Yazar, A., Tekin, S., & Yildiz, M. (2016, November). Use of drainage water for irrigation of quinoa in a Mediterranean environment. In Proceedings of 2nd World Irrigation Forum (WIF2) (pp. 6-8). Shams, A. S. (2012, September). Response of quinoa to nitrogen fertilizer rates under sandy soil conditions. In Proc. 13th International Conf. Agron., Fac. of Agric., Benha Univ., Egypt, 9-10. Smith, M. (2000). The application of climatic data for planning and management of sustainable rainfed and irrigated crop production. Agricultural and Forest Meteorology, 103(1-2), 99-108. Talebnejad, R., & Sepaskhah, A. R. (2015a). Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter. Agricultural Water Management, 148, 177-188. Talebnejad, R., & Sepaskhah, A. R. (2015b). Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa. Agricultural Water Management, 159, 225-238. Talebnejad, R., & Sepaskhah, A. R. (2016a). Physiological characteristics, gas exchange, and plant ion relations of quinoa to different saline groundwater depths and water salinity. Archives of Agronomy and Soil Science, 62(10), 1347-1367. Talebnejad, R., & Sepaskhah, A. R. (2016b). Modification of transient state analytical model under different saline groundwater depths, irrigation water salinities and deficit irrigation for quinoa. International Journal of Plant Production, 10(3), 365-390. Yang, A., Akhtar, S. S., Amjad, M., Iqbal, S., & Jacobsen, S. E. (2016). Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science, 202(6), 445-453. Yarami, N., & Sepaskhah, A. R. (2015). Saffron response to irrigation water salinity, cow manure and planting method. Agricultural Water Management, 150, 57-66. Yazar, A. 2015. Quinoa experimentation and production in Turkey. In: Bazile, D., D. Bertero, and C. Nieto (Eds.), State of the Art Report of Quinoa in the World in 2013. FAO & CIRAD, Rome, p. 466–477. Yazar, A., Incekaya, Ç., Sezen, S. M., & Jacobsen, S. E. (2015). Saline water irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop and Pasture Science, 66(10), 993-1002. Zhang, H., & Oweis, T. (1999). Water–yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agricultural Water Management, 38(3), 195-211.
| ||
آمار تعداد مشاهده مقاله: 316 تعداد دریافت فایل اصل مقاله: 292 |