تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,364 |
تعداد دریافت فایل اصل مقاله | 97,217,257 |
پیشرفتهای اخیر و روندهای تحقیقاتی در کودهای پایدار زیستی بر پایه لیگنین: فناوریهای تولید، سازو کارهای فرآیند و ارزیابی عملکرد | ||
تحقیقات آب و خاک ایران | ||
دوره 52، شماره 8، آبان 1400، صفحه 2279-2301 اصل مقاله (1.69 M) | ||
نوع مقاله: مروری | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2021.323230.668961 | ||
نویسندگان | ||
احسان سرلکی1؛ محمد حسین کیان مهر* 2؛ علی ماشاءالله کرمانی3 | ||
1دانشجوی دکتری مهندسی مکانیک بیوسیستم، گروه مهندسی فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران. | ||
2استاد، گروه فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران. | ||
3استادیار، گروه فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران. | ||
چکیده | ||
توسعه پایدار پالایشگاههای زیستی از دیدگاه اقتصاد زیستی چرخهای، نیاز به استفاده کامل از زیستتودههای لیگنوسلولزی جهت تولید محصولات با ارزش افزوده بالا دارد. بازار تجاری محصولات لیگنین در سال 2018 به ارزش 750 میلیون دلار بود و پیشبینی میشود که تا سال 2025 این مقدار به 1460 میلیون دلار برسد. در فرآیندهای صنعتی، سالانه حدود 150-180 میلیون تن لیگنینهای صنعتی در جهان بهعنوان محصول فرعی فرآیندهای لیگنین تجاری یا لیگنین پالایشگاه زیستی تولید میشود. اکثر لیگنینهای صنعتی بهطور مستقیم برای تولید گرما و حرارت سوزانده میشوند که نهتنها اتلاف مواد آلی است بلکه منجر به آلودگیهای زیست محیطی میشود. امروزه، تولید کودهای بر پایه لیگنین بهعنوان یک موضوع مهم تحقیقاتی در کشاورزی پایدار و در جهت رفع نگرانیهای زیست محیطی کودهای شیمیایی تبدیل شده است. از لیگنینها بهدلیل ویژگیهای کند-رهش و ترکیبات شیمیایی و ویژگیهای منحصر به فرد، انحلال آهسته، قابلیت جذب بالا، زیستسازگاری، زیستتجزیهپذیری، غیر فرار بودن، پایداری بلندمدت، آبشویی و آلودگی کمتر، بازده کودی بیشتر، قیمت پایین و فعالیت بیولوژیکی بیشتر میتوان بهعنوان حاملهای کند-رهش، مواد پوششی کودها، اصلاح کننده خاک و میکرو کیلیتها استفاده کرد. لیگنین میتواند انحلال مواد مغذی موجود در کود را به تاخیر بیاندازد و از این طریق عملکرد کند-رهش را بهبود بخشد و همچنین با مهار فعالیت اورهآز خاک، هیدرولیز اوره را به تأخیر بیندازد. همچنین با جلوگیری از فرآیند تبدیل نیتروژن آمونیومی به نیتروژن نیتراتی میتواند باعث افزایش بازده نیتروژن آمونیومی قابل جذب برای گیاه شود. کودهای کند-رهش بر پایه لیگنین از طریق روشهای شیمیایی، روشهای پوششدهی و روشهای کیلیت تولید میشوند. این مقاله، روشهای استخراج لیگنین، دیدگاههای فرآیندی، مشخصهیابی و کاربردهای کودهای مبتنی بر لیگنین را بهطور دقیق بررسی و پیشرفتهای تحقیقاتی اخیر در زمینه کودهای بر پایه لیگنین را گزارش میکند. | ||
کلیدواژهها | ||
زیستتوده لیگنوسلولزی؛ لیگنینهای پالایشگاه زیستی؛ لیگنینهای صنعتی؛ آموکسیداسیون؛ کود کند-رهش نیتروژن | ||
عنوان مقاله [English] | ||
Recent Advances and Research Trends in the Eco-friendly Lignin-based Fertilizers: Production Technologies, Process Mechanisms and Performance Appraisal | ||
نویسندگان [English] | ||
Ehsan Sarlaki1؛ mohammad hossein kianmehr2؛ Ali Mashaallah Kermani3 | ||
1Ph.D. Student, Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran. | ||
2Full Professor, Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran. | ||
3Assistant Professor , Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran. | ||
چکیده [English] | ||
In circular bioeconomy viewpoint, sustainable development of biorefineries requires to use the lignocellulosic biomass completely to produce high value-added bioproducts. The lignin products market was 750 million US$ in 2018 and is predicted to reach 1460 million US$ by the end of 2025. In industrial processes, the large amounts of industrial lignins as technical lignins or biorefinery lignins are formed as by‐products. Annually, about 150-180 million tons of industrial lignins is generated in worldwide. Most of industrial lignins are directly combusted to obtain heat, which not only is a loss of organic matter but also leads to environmental pollution issues. Therefore, developing the lignin-based fertilizers has become an important research topic for eco-friendly agricultural practices. Interestingly, lignin can be used as slow‐release carriers, coating materials, soil conditioners and chelated micro-fertilizers due to its excellent slow-release properties, chelating and other functionalities. Lignin-based fertilizers have several specific properties including the slow dissolution, adsorptivity, biocompatibility, controlled-release, biodegradability, nonvolatility, long-term stability, anti-leaching, low pollution, high fertilizer efficiency, low price and higher biological activity. Lignin can delay the dissolution of the nutrients (nitrogen, phosphate, etc.) in the modified fertilizer to improve the slow-release performance and also delay hydrolysis of urea by inhibiting the soil urease activity and inhibit the conversion of NH4+-N to NO3--N, thereby increasing the utilization of NH4+-N. Lignin‐based fertilizers prepared by sustainable chemical, coating and micro-chelation modifications. This review, exhaustively scrutinizes and reports the recent research advances in the lignin extraction methods, underlying mechanisms, characterization and applications of the above methods for preparing lignin‐based fertilizers. | ||
کلیدواژهها [English] | ||
Lignocellulosic biomass, Industrial lignins, Biorefinery lignins, Ammoxidation, Slow release nitrogen fertilizer | ||
مراجع | ||
Ahmad, U.M., Ji, N., Li, H., Wu, Q., Song, C., Liu, Q., Ma, D., Lu, X. (2021). Can lignin be transformed into agrochemicals? Recent advances in the agricultural applications of lignin. Industrial Crops and Products. 170, 113646. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113646 Alemi, H., Kianmehr, M.H., Borghaee, A.M. (2010). Effect of pellet processing of fertilizer on slow-release nitrogen in soil. Asian J. Plant Sci. 9, 74–80. Antonsson, S., Henriksson, G., Johansson, M., Lindström, M.E. (2008). Low Mw-lignin fractions together with vegetable oils as available oligomers for novel paper-coating applications as hydrophobic barrier. Industrial Crops and Products. 27, 98–103. https://doi.org/10.1016/j.indcrop.2007.08.006 Aro, T and Fatehi, P. (2017). Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem 10, 1861–1877. https://doi.org/10.1002/cssc.201700082 Azeem, B., KuShaari, K., Man, Z.B., Basit, A., Thanh, T.H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 181, 11–21. https://doi.org/https://doi.org/10.1016/j.jconrel.2014.02.020 Bajwa, D.S., Pourhashem, G., Ullah, A.H., Bajwa, S.G. (2019). A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops and Products. 139, 111526. https://doi.org/https://doi.org/10.1016/j.indcrop.2019.111526 Behin, J and Sadeghi, N. (2016). Utilization of waste lignin to prepare controlled-slow release urea. Int. J. Recycl. Org. Waste Agric. 5, 289–299. https://doi.org/10.1007/s40093-016-0139-1 Bouxin, F.P., David Jackson, S., Jarvis, M.C. (2014). Isolation of high quality lignin as a by-product from ammonia percolation pretreatment of poplar wood. Bioresour. Technol. 162, 236–242. https://doi.org/10.1016/j.biortech.2014.03.082 Budzianowski, W.M. (2017). High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew. Sustain. Energy Rev. 70, 793–804. https://doi.org/https://doi.org/10.1016/j.rser.2016.11.260 Capanema, E. A., Balakshin, M. Y., Chen, C. L., Gratzl, J. S. (2006). Oxidative ammonolysis of technical lignins. Part 4. Effects of the ammonium hydroxide concentration and pH. J. Wood Chem. Technol, 26, 95-109. Capanema, E. A., Balakshin, M. Y., Chen, C. L., Gratzl, J. S., Kirkman, A. G. (2002). Oxidative ammonolysis of technical lignins. Part 3. Effect of temperature on the reaction rate. Holzforschung, 56, 402-415. Capanema, E. A., Balakshin, M. Y., Chen, C. L., Gratzl, J. S., Kirkman, A. G. (2001). Oxidative ammonolysis of technical lignins Part 2. Effect of oxygen pressure. Holzforschung, 55, 405-412. Capanema, E. A., Balakshin, M. Y., Chen, C. L., Gratzl, J. S., Kirkman, A. G. (2001). Oxidative ammonolysis of technical lignins Part 1. Kinetics of the reaction under isothermal condition at 130°C. Holzforschung, 55, 397-404. Chen, J., Fan, X., Zhang, L., Chen, X., Sun, S., Sun, R.-C. (2020). Research Progress in Lignin-Based Slow/Controlled Release Fertilizer. ChemSusChem 13, 4356–4366. https://doi.org/https://doi.org/10.1002/cssc.202000455 Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., Liu, M. (2018). Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 613–614, 829–839. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.09.186 Chojnacka, K., Moustakas, K., Witek-Krowiak, A. (2020). Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 295, 122223. https://doi.org/10.1016/J.BIORTECH.2019.122223 Duan, Y., Pandey, A., Zhang, Z., Awasthi, M.K., Bhatia, S.K., Taherzadeh, M.J. (2020). Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. Ind. Crops Prod. 153, 112568. https://doi.org/https://doi.org/10.1016/j.indcrop.2020.112568. Eraghi Kazzaz, A and Fatehi, P. (2020). Technical lignin and its potential modification routes: A mini-review. Industrial Crops and Products. 154, 112732. https://doi.org/https://doi.org/10.1016/j.indcrop.2020.112732 Fernández-Pérez, M., Garrido-Herrera, F.J., González-Pradas, E., Villafranca-Sánchez, M., Flores-Céspedes, F. (2008). Lignin and ethylcellulose as polymers in controlled release formulations of urea. J. Appl. Polym. Sci. 108, 3796–3803. https://doi.org/10.1002/app.27987 Fernández-Pérez, M., Villafranca-Sánchez, M., Flores-Céspedes, F., Daza-Fernández, I. (2011). Ethylcellulose and lignin as bearer polymers in controlled release formulations of chloridazon. Carbohydr. Polym. 83, 1672–1679. https://doi.org/https://doi.org/10.1016/j.carbpol.2010.10.024 Fertahi, S., Bertrand, I., Amjoud, M., Oukarroum, A., Arji, M., Barakat, A. (2019). Properties of Coated Slow-Release Triple Superphosphate (TSP) Fertilizers Based on Lignin and Carrageenan Formulations. ACS Sustain. Chem. Eng. 7, 10371–10382. https://doi.org/10.1021/acssuschemeng.9b00433 Fertahi, S., Ilsouk, M., Zeroual, Y., Oukarroum, A., Barakat, A. (2021). Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. J. Control. Release 330, 341–361. https://doi.org/https://doi.org/10.1016/j.jconrel.2020.12.026 Fischer, K and Schiene, R. (2002) Nitrogenous Fertilizers from Lignins — A Review. In: Hu T.Q. (eds) Chemical Modification, Properties, and Usage of Lignin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0643-0_10 García, C., Vallejo, A., García, L., Cartagena, M.C., Diéz, J.A. (1997). Nitrogen use efficiency with the application of controlled release fertilizers coated with kraft pine lignin. Soil Sci. Plant Nutr. 43, 443–449. https://doi.org/10.1080/00380768.1997.10414768 García, M.C., Díez, J.A., Vallejo, A., García, L., Cartagena, M.C. (1996). Use of Kraft Pine Lignin in Controlled-Release Fertilizer Formulations. Ind. Eng. Chem. Res. 35, 245–249. https://doi.org/10.1021/ie950056f Ghorbani, M., Kianmehr, M.H., Arabhosseini, A., Sarlaki, E., Aghashahi, A., Assadi-Alamouti, A. (2021b). Improving the nutritive value of wheat straw by applying the combined chemical - oxidation treatment in-vitro for use as ruminant feed. Animal Production Research, In press, In press. Ghorbani, M., Kianmehr, M.H., Sarlaki, E., Ahrari, R., Azadegan, B. (2021a). Improving sustainability and slow-release property of pelletized agro-biowaste compost fertilizer assisted by biodegradable coating. Iranian Journal of Soil and Water Research, In press, In press. Gu, H., Zhang, Y., Li, X., Li, W., Huang, S. (2019). Lignin improves release behavior of slow-release fertilizers with high content of urea. J. Appl. Polym. Sci. 136, 48238. https://doi.org/https://doi.org/10.1002/app.4823 Guo, X., Zhang, S., Shan, X. (2008). Adsorption of metal ions on lignin. J. Hazard. Mater. 151, 134–142. https://doi.org/https://doi.org/10.1016/j.jhazmat.2007.05.065 Harmita, H., Karthikeyan, K.G., Pan, X. (2009). Copper and cadmium sorption onto kraft and organosolv lignins. Bioresour. Technol. 100, 6183–6191. https://doi.org/https://doi.org/10.1016/j.biortech.2009.06.093. Huang, C, Ragauskas, A.J., Wu, X., Huang, Y., Zhou, X., He, J., Huang, Caoxing, Lai, C., Li, X., Yong, Q. (2018). Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue. Bioresour. Technol. 250, 365–373. https://doi.org/https://doi.org/10.1016/j.biortech.2017.11.060 Huang, D., Li, R., Xu, P., Li, T., Deng, R., Chen, S., Zhang, Q. (2020). The cornerstone of realizing lignin value-addition: Exploiting the native structure and properties of lignin by extraction methods. Chem. Eng. J. 402, 126237. https://doi.org/https://doi.org/10.1016/j.cej.2020.126237 Huang, J., Fu, S., Gan, L.B.T.-L.C. and A. (Eds.) (2019). Chapter 4 - Lignin Chemicals and Their Applications. Elsevier, pp. 79–134. https://doi.org/https://doi.org/10.1016/B978-0-12-813941-7.00004-7 Jiao, G-J., Peng, P., Sun, S-L., Geng, Z-C., She, D. (2019). Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer. International Journal of Biological Macromolecules, 127 (15): 544–54. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.01.076. Kexing, L, and Dehan, W. (1998). Preliminary report on the activation of phosphate rock powder by papermaking waste liquid and lignin. Guangdong Paper, 10(3):14–5. Klinger, K.M., Liebner, F., Hosoya, T., Potthast, A., Rosenau, T. (2013). Ammoxidation of lignocellulosic materials: formation of nonheterocyclic nitrogenous compounds from monosaccharides. J. Agric. Food Chem. 61, 9015–9026. https://doi.org/10.1021/jf401960m Lapierre, C., Monties, B., Meier, D., Faix, O. (1994). Structural investigation of kraft lignins transformed via oxo-ammoniation to Potential nitrogenous fertilizers. Holzforschung 48, 63–68. https://doi.org/10.1515/hfsg.1994.48.s1.63 Lawrencia, D., Wong, S.K., Low, D.Y.S., Goh, B.H., Goh, J.K., Ruktanonchai, U.R., Soottitantawat, A., Lee, L.H., Tang, S.Y. (2021). Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants (Basel, Switzerland) 10, 238. https://doi.org/10.3390/plants10020238 Legras-Lecarpentier, D., Stadler, K., Weiss, R., Guebitz, G.M., Nyanhongo, G.S. (2019). Enzymatic Synthesis of 100% Lignin Biobased Granules as Fertilizer Storage and Controlled Slow Release Systems. ACS Sustain. Chem. Eng. 7, 12621–12628. https://doi.org/10.1021/acssuschemeng.9b02689 Li, H., Xiong, L., Chen, Xuefang, Wang, C., Qi, G., Huang, C., Luo, M., Chen, X. (2017). Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment. Bioresour. Technol. 228, 257–263. https://doi.org/https://doi.org/10.1016/j.biortech.2016.12.119 Li, J., Wang, M., She, D., Zhao, Y. (2017). Structural functionalization of industrial softwood kraft lignin for simple dip-coating of urea as highly efficient nitrogen fertilizer. Industrial Crops and Products. 109, 255–265. https://doi.org/https://doi.org/10.1016/j.indcrop.2017.08.011 Li, T., Lü, S., Ji, Y., Qi, T., Liu, M. (2018). A biodegradable Fe-fertilizer with high mechanical property and sustainable release for potential agriculture and horticulture applications. New J. Chem. 42, 19129–19136. https://doi.org/10.1039/C8NJ04381G Li, T., Lü, S., Wang, Z., Huang, M., Yan, J., Liu, M. (2021). Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers. Sci. Total Environ. 765, 142745. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.142745 Li, T., Lü, S., Zhang, S., Gao, C., Liu, M. (2018). Lignin-based multifunctional fertilizer for immobilization of Pb (II) in contaminated soil. J. Taiwan Inst. Chem. Eng. 91, 643–652. https://doi.org/https://doi.org/10.1016/j.jtice.2018.06.025 Liao, J.J., Latif, N.H.A., Trache, D., Brosse, N., Hussin, M.H. (2020). Current advancement on the isolation, characterization and application of lignin. Int. J. Biol. Macromol. 162, 985–1024. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.06.168 Lin, C., Jim, Y., Zhongzheng, L. (1998). The application of lignin in fertilizers. China Paper, 10(2):68–70. Lobato-Peralta, D.R., Duque-Brito, E., Villafán-Vidales, H.I., Longoria, A., Sebastian, P.J., Cuentas-Gallegos, A.K., Arancibia-Bulnes, C.A., Okoye, P.U. (2021). A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications. J. Clean. Prod. 293, 126123. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126123 Meier, D., Zúñiga-Partida, V., Ramírez-Cano, F., Hahn, N.-C., Faix, O. (1994). Conversion of technical lignins into slow-release nitrogenous fertilizers by ammoxidation in liquid phase. Bioresour. Technol. 49, 121–128. https://doi.org/10.1016/0960-8524(94)90075-2 Meisheng, X. (2001). Papermaking black liquor solidification technology and organic compound fertilizer fertilizer efficiency test. Environment and Development, 16(2):17–8. Mulder, W.J., Gosselink, R.J.A., Vingerhoeds, M.H., Harmsen, P.F.H., Eastham, D. (2011). Lignin based controlled release coatings. Industrial Crops and Products. 34, 915–920. https://doi.org/10.1016/j.indcrop.2011.02.011 Nizami, A.S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O.K.., Shahzad, K., Miandad, R., Khan, M.Z., Syamsiro, M., Ismail, I.M.I., Pant, D. (2017). Waste biorefineries: Enabling circular economies in developing countries. Bioresour. Technol. 241, 1101–1117. https://doi.org/10.1016/J.BIORTECH.2017.05.097 Poveda-Giraldo, J.A., Solarte-Toro, J.C., Cardona Alzate, C.A. (2021). The potential use of lignin as a platform product in biorefineries: A review. Renew. Sustain. Energy Rev. 138, 110688. https://doi.org/https://doi.org/10.1016/j.rser.2020.110688 Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E. (2014). Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science (80) 344, 1246843. https://doi.org/10.1126/science.1246843 Ramirez, F., Gonzalez, V., Crespo, M., Meier, D., Faix, O., Zúñiga, V. (1997). Ammoxidized kraft lignin as a slow-release fertilizer tested on orghum vulgare. Bioresour Technol, 61(1): 43–6. Rotondo, F., Coniglio, R., Cantera, L., Di Pascua, I., Clavijo, L., Dieste, A. (2018). Lignin-based coatings for controlled P-release fertilizer consisting of granulated simple superphosphate. Holzforschung 72, 637–643. https://doi.org/10.1515/hf-2017-0176 Sadeghi, N. and Behin, J. (2020). Modeling of nitrogen release in urea-modified lignin matrix. Journal of Modeling in Engineering. 18, 1–11. https://doi.org/10.22075/jme.2019.15484.1538 Sadeghi, N., Shayesteh, K., Lotfiman, S. (2017). Effect of Modified Lignin Sulfonate on Controlled-Release Urea in Soil. Journal of Polymers and the Environment. 25, 792–799. https://doi.org/10.1007/s10924-016-0848-6 Sarlaki, E., Kermani, A.M., Kianmehr, M.H., Asefpour Vakilian, K., Hosseinzadeh-Bandbafha, H., Ma, N.L., Aghbashlo, M., Tabatabaei, M., Lam, S.S., (2021a). Improving sustainability and mitigating environmental impacts of agro-biowaste compost fertilizer by pelletizing-drying. Environ. Pollut. 285, 117412. https://doi.org/https://doi.org/10.1016/j.envpol.2021.117412 Sarlaki, E., Kianmehr, M.H., Ghorbani, M. (2021b). Analytical methods for assessing the quality of sugarcane bagasse compost and improving the physicomechanical properties toward densification. Environmental Sciences, In press, In press. Sarlaki, E., Kianmehr, M.H., Ghorbani, M., Azadegan, B. (2021c). Optimization of pelletizing process of sugarcane bagasse compost using response surface methodology and evaluation of release rate of nitrogen from pellet. Iranian Journal of Soil and Water Research, 52 (4), 1117-1133. Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M.H., Asefpour Vakilian, K. (2021d). Valorization of lignite wastes into humic acids: Process optimization, energy efficiency and structural features analysis. Renewable Energy, 163, 105–22. https://doi.org/https://doi.org/10.1016/j.renene.2020.08.096. Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M.H., Asefpour Vakilian, K. (2019a). Extraction and purification of humic acids from lignite wastes using alkaline treatment and membrane ultrafiltration. Journal of Cleaner Production, 235, 712-23. https://doi.org/10.1016/j.jclepro.2019.07.028. Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M.H., Asefpour Vakilianm, K. (2020). Chemical, Spectral and Morphological Characterization of Humic Acids Extracted and Membrane Purified from Lignite. Chemical & Chemistry Technology, 14:353–61. https://doi.org/10.23939/chcht14.03.353. Sarlaki, E., Sharif Paghaleh, A., Kianmehr, M.H., Mirsaeedghazi, H. (2017). Effect of processing temperature on membrane ultrafiltration of lignite coals-derived humic alkaline extracts, membrane performance and humic acid purity. Iranian Journal of Biosystems Engineering, 48:475–89. https://doi.org/10.22059/ijbse.2017.63813. Sarlaki, E., Sokhandan Toomaj, M., Sharif Paghaleh, A., Kianmehr, M.H., Nikousefat, O. (2019b). Extraction of humic acid from lignite coals using stirred tank reactors (STRs): Assessment of process parameters and final product characterization. Iranian Journal of Soil and Water Research, 50:1111–25. https://doi.org/10.22059/ijswr.2018.260201.667947. Schneider, W.D.H., Dillon, A.J.P., Camassola, M. (2021). Lignin nanoparticles enter the scene: A promising versatile green tool for multiple applications. Biotechnol. Adv. 47, 107685. https://doi.org/https://doi.org/10.1016/j.biotechadv.2020.107685 Sharif Paghaleh, A., Sarlaki, E., Kianmehr, M.H., Shakiba, N. (2017). Study of spectral, structural and chemical characteristics of humic acids isolated from coalfield of Iran. Iranian Journal of Soil and Water Research, 48:1145–58. https://doi.org/10.22059/ijswr.2018.228746.667639. Shayesteh, K., Mohammadzadeh, ghasem, Zamanloo, M. (2020). Study and optimization of parameters affecting the acetylation process of lignin sulfonate biopolymer. Int. J. Biol. Macromol. 163, 1810–1820. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.09.014 Sipponen, M.H., Rojas, O.J., Pihlajaniemi, V., Lintinen, K., Österberg, M. (2017). Calcium Chelation of Lignin from Pulping Spent Liquor for Water-Resistant Slow-Release Urea Fertilizer Systems. ACS Sustain. Chem. Eng. 5, 1054–1061. https://doi.org/10.1021/acssuschemeng.6b02348 Tajinia, R., Kianmehr, M.H., Sarlaki, E., Sharif Paghaleh, A., Mirsaeedghazi, H. (2020). Extracting humic acids from spend mushroom compost (SMC) by alkaline treatment and membrane ultrafiltration. Iranian Journal of Biosystems Engineering, 50, 847–61. https://doi.org/10.22059/ijbse.2019.269856.665118. Tribot, A., Amer, G., Abdou Alio, M., de Baynast, H., Delattre, C., Pons, A., Mathias, J.-D., Callois, J.-M., Vial, C., Michaud, P., Dussap, C.-G. (2019). Wood-lignin: Supply, extraction processes and use as bio-based material. Eur. Polym. J. 112, 228–240. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2019.01.007 Ubando, A.T., Felix, C.B., Chen, W.-H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 299, 122585. https://doi.org/10.1016/J.BIORTECH.2019.122585 Venkata Mohan, S., Dahiya, S., Amulya, K., Katakojwala, R., Vanitha, T.K. (2019). Can circular bioeconomy be fueled by waste biorefineries — A closer look. Bioresour. Technol. Reports 7, 100277. https://doi.org/https://doi.org/10.1016/j.biteb.2019.100277 Wang, B., Chen, T.-Y., Wang, H.-M., Li, H.-Y., Liu, C.-F., Wen, J.-L. (2018). Amination of biorefinery technical lignins using Mannich reaction synergy with subcritical ethanol depolymerization. Int. J. Biol. Macromol. 107, 426–435. https://doi.org/10.1016/j.ijbiomac.2017.09.012 Wang, B., Wen, J.-L., Sun, S.-L., Wang, H.-M., Wang, S.-F., Liu, Q.-Y., Charlton, A., Sun, R.-C. (2017). Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II). Industrial Crops and Products. 108, 72–80. https://doi.org/10.1016/j.indcrop.2017.06.013 Wang, D.H., Peng, J.J., Liao, Z.W.J. (2003). Preparation of Urea Coated with Lignin (LCU) and Its Fertilizer Efficiency Test. Agro-Environ. Sci, 22, pp. 185-188. Wang, H., Chen, X., Zhang, L., Li, Z., Fan, X., Sun, S. (2021). Efficient production of lignin-based slow-release nitrogen fertilizer via microwave heating. Industrial Crops and Products. 166, 113481. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113481 Wang, X., Zhang, Y., Hao, C., Dai, X., Zhou, Z., Si, N. (2014). Ultrasonic-assisted synthesis of aminated lignin by a Mannich reaction and its decolorizing properties for anionic azo-dyes. RSC Adv. 4, 28156–28164. https://doi.org/10.1039/c4ra03133d Yanli, M., Ruru, W., Guizhen, F. (2012). Preparation and sustained release properties of polyacrylic acid grafted alkali lignin-based iron fertilizer. Journal of Agricultural Engineering, 28(18): 208–14. Yiqin, Y., Baoyu, L., Yunfeng, C., et al. (2009). Study on Preparation of slow-release nitrogen fertilizer by sodium lignin lignosulfonate. Zhonghua Paper, 29(13): 55–8. Zafari, A., Kianmehr, M.H. (2012). Effect of raw material properties and die geometry on the density of biomass pellets from composted municipal solid waste. BioResources 7, 4704–4714. Zafari, A., Kianmehr, M.H. (2014). Factors affecting mechanical properties of biomass pellet from compost. Environ. Technol. (United Kingdom) 35, 478–486. Zevallos Torres, L.A., Lorenci Woiciechowski, A., de Andrade Tanobe, V.O., Karp, S.G., Guimarães Lorenci, L.C., Faulds, C., Soccol, C.R. (2020). Lignin as a potential source of high-added value compounds: A review. J. Clean. Prod. 263, 121499. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121499.
| ||
آمار تعداد مشاهده مقاله: 705 تعداد دریافت فایل اصل مقاله: 478 |