تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,097,505 |
تعداد دریافت فایل اصل مقاله | 97,205,207 |
توسعه و واسنجی یک مدل اجزا گسسته آزمون فروسنجی در خاک چسبنده | ||
مهندسی بیوسیستم ایران | ||
دوره 52، شماره 4، دی 1400، صفحه 613-633 اصل مقاله (1.38 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2021.323522.665408 | ||
نویسندگان | ||
مصطفی بهرامی1؛ مجتبی نادری بلداجی* 2؛ داود قنبریان3 | ||
1دانشجوی دکتری- گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران | ||
2گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران | ||
3گروه طراحی صنعتی، دانشگاه هنر، تهران، ایران | ||
چکیده | ||
یکی از روشهای متداول اندازهگیری مقاومت مکانیکی خاک، آزمون فروسنجی است. از این آزمون همچنین میتوان بهعنوان یک روش ساده برای واسنجی پارامترهای خاک در شبیهسازی با روش اجزا گسسته (DEM) استفاده نمود. در این مطالعه، یک مدل اجزا گسسته برای برهمکنش فروسنج با خاک لوم رسی توسعه داده شد و ارتباط بین شاخص مخروط و پارامترهای مدل اجزا گسسته با تغییر رطوبت و چگالی ظاهری خاک بررسی گردید. مدل تماسی هیبریدی فنر هیسترتیک – چسبندگی خطی برای شبیهسازی خاک استفاده شد. تحلیل حساسیت پارامترهای مدل نشان داد که چسبندگی، ضریب اصطکاک داخلی و استحکام تسلیم ذرات از مهمترین پارامترهای اثرگذار بر شاخص مخروط هستند. آزمونهای آزمایشگاهی با یک مخروط استاندارد با استفاده از دستگاه کشش- فشار در خاک قالبگیری شده در دو رطوبت 11 و 16 درصد، هر کدام در دو سطح جرم مخصوص ظاهری 1000 و 1150 کیلوگرم بر متر مکعب انجام شد. با انطباق رابطه شاخص مخروط- عمق اندازهگیری شده و شبیهسازی شده، مقادیری برای تنش تسلیم ذرات استخراج گردید که همبستگی بسیار قوی (97/0R2=) با بیشینه شاخص مخروط نشان داد. این نتایج با آزمون نشست صفحهای در خاک نیز اعتبارسنجی شد. بهعنوان یک نتیجهگیری کلی، آزمون فروسنجی را میتوان برای واسنجی تنش تسلیم ذرات خاک در مدل اجزا گسسته به کار گرفت. | ||
کلیدواژهها | ||
مدل اجزا گسسته؛ واسنجی؛ فروسنج مخروطی؛ برهمکنش ماشین و خاک | ||
عنوان مقاله [English] | ||
Development and Calibration of a Discrete Element Model for Penetration Test in Cohesive Soil | ||
نویسندگان [English] | ||
Mostafa Bahrami1؛ Mojtaba Naderi-Boldaji2؛ Davoud Ghanbarian3 | ||
1PhD student, Dept. of Biosystems Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran | ||
2Dept. Biosystems Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran | ||
3Dept. Industrial Design, University of Art, Tehran, Iran | ||
چکیده [English] | ||
Cone penetration test is one of the methods widely used for measuring the soil mechanical strength. It can also be used as a simple method to calibrate soil parameters in the discrete element method (DEM) simulations. In this study, a DEM model for the interaction of a cone penetrometer with a clay loam soil was developed and the possibility of finding relationships between the cone index and the parameters of the model for different levels of moisture and soil density was investigated. A hybrid contact model, hysterical spring - linear cohesion was used to simulate the soil. Sensitivity analysis of the model parameters showed cohesion, coefficient of internal friction and particle yield strength are the most important parameters affecting the cone index. Laboratory cone penetration tests using a tension-compression loading frame were performed in remolded soil at two moisture contents of 11 and 16% each at two bulk densities of 1000 and 1150 kg m-3. By fitting the measured and simulated cone index- depth profiles, values for particle yield strength were obtained which showed a strong correlation (R2 = 0.97) with the maximum cone index in the tested soils. The results were validated using plate sinkage test. As a general conclusion, the cone penetration test can be used to calibrate the yield strength of soil particles in the discrete element simulations. | ||
کلیدواژهها [English] | ||
Discrete element model, Calibration, Cone penetrometer, Soil-machine interaction | ||
مراجع | ||
Aikins, K. A., Ucgul, M., Barr, J. B., Jensen, T. A., Antille, D. L., & Desbiolles, J. M. (2021). Determination of discrete element model parameters for a cohesive soil and validation through narrow point opener performance analysis. Soil and Tillage Research, 213, 105123. ASABE Standards EP542.)2019). Procedures for using and reporting data obtained with the soil cone penetrometer. ASABE, St. Joseph, MI. ASABE Standards S313.3. (2013). Soil Cone Penetrometer. ASABE, St. Joseph, MI. Asaf, Z., Rubinstein, D., & Shmulevich, I. (2007). Determination of discrete element model parameters required for soil tillage. Soil and Tillage Research, 92(1-2), 227-242. Azimi-Nejadian, H. Karparvarfard, S. H. Naderi-Boldaji, M. & Rahmanian-Koushkaki, H. (2019). Combined finite element and statistical models for predicting force components on a cylindrical mouldboard plough. Biosystems Engineering, 186, 168-181. Bahrami, M., Naderi-Boldaji, M., Ghanbarian, D., Ucgul, M., & Keller, T. (2020). Simulation of plate sinkage in soil using discrete element modelling: Calibration of model parameters and experimental validation. Soil and Tillage Research, 203, 104700. Barr, J., Desbiolles, J., Ucgul, M., & Fielke, J. M. (2020). Bentleg furrow opener performance analysis using the discrete element method. Biosystems Engineering, 189, 99-115. Bravo, E. L., Tijskens, E., Suárez, M. H., Cueto, O. G., & Ramon, H. (2014). Prediction model for non-inversion soil tillage implemented on discrete element method. Computers and Electronics in Agriculture, 106, 120-127. Coetzee, C. J. (2017). Calibration of the discrete element method. Powder Technology, 310, 104-142. Cundall, P. A. & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65. De Pue, J., Di Emidio, G., Flores, R. D. V., Bezuijen, A., & Cornelis, W. M. (2019). Calibration of DEM material parameters to simulate stress-strain behaviour of unsaturated soils during uniaxial compression. Soil and Tillage Research, 194, 104303. DEM Solutions. (2014). EDEM 2.6 Theory Reference Guide. Edinburgh, United Kingdom. Hærvig, J., Kleinhans, U., Wieland, C., Spliethoff, H., Jensen, A. L., Sørensen, K., & Condra, T. J. (2017). On the adhesive JKR contact and rolling models for reduced particle stiffness discrete element simulations. Powder Technology, 319, 472-482. Janda, A. & Ooi, J. Y. (2016). DEM modeling of cone penetration and unconfined compression in cohesive solids. Powder Technology, 293, 60-68. Jang, G., Lee, S., & Lee, K. J. (2016). Discrete element method for the characterization of soil properties in Plate-Sinkage tests. Journal of Mechanical Science and Technology, 30(6), 2743-2751. Kanyawi, N & Shahgholi, gh (2018). Simulation of the effect of different vibration angles on the performance of vibrating substrate and soil using discrete element method. Iranian Journal of Biosystem Engineering, 49 (2), 181-194. Keppler, I., Hudoba, Z., Oldal, I., Csatar, A., & Fenyvesi, L. (2015). Discrete element modeling of vibrating tillage tools. Engineering Computations. Kešner, A., Chotěborský, R., Linda, M., Hromasová, M., Katinas, E., & Sutanto, H. (2021). Stress distribution on a soil tillage machine frame segment with a chisel shank simulated using discrete element and finite element methods and validate by experiment. Biosystems Engineering, 209, 125-138. Khairalipour, K. (2020). Discrete element method (DEM) and its application in agricultural soil dynamics, 12th National Congress of Mechanical Biosystems Engineering and Mechanization of Iran, Ahvaz. Kotrocz, K. Mouazen, A. M. & Kerényi, G. (2016). Numerical simulation of soil–cone penetrometer interaction using discrete element method. Computers and ELectronics in Agriculture, 125, 63-73. Lin, J. Sun, Y. & Lammers, P. S. (2014). Evaluating model-based relationship of cone index, soil water content and bulk density using dual-sensor penetrometer data. Soil and Tillage Research, 138, 9-16. Lommen, S., Schott, D., & Lodewijks, G. (2014). DEM speedup: Stiffness effects on behavior of bulk material. Particuology, 12, 107-112. Mouazen, A. M. & Neményi, M. (1998). A review of the finite element modelling techniques of soil tillage. Mathematics and Computers in Simulation, 48(1), 23-32. Naderi-Boldaji, M.; Alimardani, R., Sharifi, A. & Tabatabaeifar, A., (2008), Design, construction and evaluation of manual digital intrusion gauge, 5th national congress of agricultural machinery and mechanization engineering, Iranian Congress on Agricultural Machinery and Mechanization Engineering, Ferdowsi University of Mashhad Naderi-Boldaji, M. Hajian, A. Ghanbarian, D. & Bahrami, M. (2018). Finite element simulation of plate sinkage, confined and semi-confined compression tests: A comparison of the response to yield stress. Soil and Tillage Research, 179, 63-70. Navid, H., & Mohammadi Baneh, N. (2011). Three-dimensional finite element analysis of wide tillage tools in sandy loam soils. Journal of Mechanical Engineering University of Tabriz, 41 (1), 67-72. Sadek, M. A. Tekeste, M. & Naderi-Boldaji, M. (2017). Calibration of soil compaction behavior using Discrete Element Method (DEM). In 2017 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers. Sadek, M. A., & Chen, Y. (2015). Feasibility of using PFC3D to simulate soil flow resulting from a simple soil-engaging tool. Transactions of the ASABE, 58(4), 987-996. Sadek, M. A., Chen, Y., & Zeng, Z. (2021). Draft force prediction for a high-speed disc implement using discrete element modelling. Biosystems Engineering, 202, 133-141. Saunders, C., Ucgul, M., & Godwin, R. J. (2021). Discrete element method (DEM) simulation to improve performance of a mouldboard skimmer. Soil and Tillage Research, 205, 104764. Shahqoli, Gh & Shahi, N. )2010(, Modeling of Soil Interaction and Narrow Blades Using Discrete Elements Method, First National Conference on Mechanization and New Technologies in Agriculture of Ahvaz. Simons, T. A., Weiler, R., Strege, S., Bensmann, S., Schilling, M., & Kwade, A. (2015). A ring shear tester as calibration experiment for DEM simulations in agitated mixers–a sensitivity study. Procedia Engineering, 102, 741-748. Smith, W. C. (2014). Modeling of Wheel-Soil Interaction for Small Ground Vehicles Operating on Granular Soil (Doctoral dissertation). Sudduth, K. A., Hummel, J. W., & Drummond, S. T. (2004). Comparison of the Veris Profiler 3000 to an ASAE-standard penetrometer. Applied Engineering in Agriculture, 20(5), 535. Syed, Z. Tekeste, M. & Way, T. (2017). Discrete Element Modeling (DEM) of Cone Penetration Testing on Soil With Varying Relative Soil Density. In 2017 ASABE Annual International Meeting (p. 1). Tamás, K., & Tóth, M. F. (2019). Modeling the soil heterogeneity in the discrete element model of soil-sweep interaction. Particles . 294-304. Tekeste, M. Z., Way, T. R., Syed, Z., & Schafer, R. L. (2020). Modeling soil-bulldozer blade interaction using the discrete element method (DEM). Journal of Terramechanics, 88, 41-52. Tsuji, T., Nakagawa, Y., Matsumoto, N., Kadono, Y., Takayama, T., & Tanaka, T. (2012). 3-D DEM simulation of cohesive soil-pushing behavior by bulldozer blade. Journal of Terramechanics, 49(1), 37-47. Ucgul, M. Fielke, J. M. & Saunders, C. (2014). 3D DEM tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil. Soil and Tillage Research, 144, 220-227. Ucgul, M., Fielke, J. M., & Saunders, C. (2015). Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion. Biosystems Engineering, 129, 298-306. Ucgul, M. Saunders, C. & Fielke, J. M. (2017a). Discrete element modelling of tillage forces and soil movement of a one-third scale mouldboard plough. Biosystems Engineering, 155, 44-54. Ucgul, M. Saunders, C. & Fielke, J. M. (2017b). Particle and geometry scaling of the hysteretic spring/linear cohesion contact model for discrete element modelling of soil-tool simulation. In 2017 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers. St. Joseph, MI. Ucgul, M., Saunders, C., & Fielke, J. M. (2017c). Discrete element modelling of top soil burial using a full scale mouldboard plough under field conditions. Biosystems Engineering, 160, 140-153. Vaz, C. M. Manieri, J. M. De Maria, I. C. & Tuller, M. (2011). Modeling and correction of soil penetration resistance for varying soil water content. Geoderma, 166(1), 92-101. Walton, O. (2006). (Linearized) Elastic–Plastic Contact Model. DEM Solutions. Walton, O. R. & Braun, R. L. (1986). Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of Rheology, 30(5), 949-980. Zeng, Z. & Chen, Y. (2019). Simulation of straw movement by discrete element modelling of straw-sweep-soil interaction. Biosystems Engineering, 180, 25-35. Zeng, Z., Thoms, D., Chen, Y., & Ma, X. (2021). Comparison of soil and corn residue cutting performance o f different discs used for vertical tillage. Scientific Reports, 11(1), 1-10. Zhang, N., Arroyo, M., Ciantia, M. O., Gens, A., & Butlanska, J. (2019). Standard penetration testing in a virtual calibration chamber. Computers and Geotechnics, 111, 277-289.
| ||
آمار تعداد مشاهده مقاله: 606 تعداد دریافت فایل اصل مقاله: 394 |