تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,093,016 |
تعداد دریافت فایل اصل مقاله | 97,197,284 |
Household Dust from a City in Morocco: Characterization by Scanning Electron Microscopy | ||
Pollution | ||
دوره 8، شماره 2، تیر 2022، صفحه 513-527 اصل مقاله (1.85 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2021.330823.1190 | ||
نویسندگان | ||
Youssef Bouchriti* 1؛ Belkacem Kabbachi1؛ Mohamed Ait Haddou1؛ Abderrahmane Achbani2؛ Rachid Amiha1؛ Hicham Gougueni1 | ||
1Geosciences and Environment Group, Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, P.O.Box 8106 Dakhla Street, 80000, Agadir, Morocco | ||
2Laboratory of Cell Biology and Molecular Genetics, Department of Biology, Faculty of Sciences, Ibn Zohr University, P.O.Box 8106 Dakhla Street, 80000, Agadir, Morocco | ||
چکیده | ||
Exposure to household dust is a common occurrence in all countries and causes various diseases. This study provided information on the number, shape, size distribution, and elemental composition of household dust particles collected in urban homes in Agadir city in Morocco. Moreover, a potential human health risk of exposure has been identified based on current research. Samples were analyzed using computer-controlled scanning electron microscopy and ImageJ image processing program. A total of 3296 particles were analyzed for their size, and 76 particles were classified according to their size and elemental composition. Household dust particles were classified in six types: micro-aggregates (31.6%), biogenic (5.3%), spherical (17.1%), subrounded (7.9%), subangular (11.8%), and angular (26.3%). These particles were determined to have originated from a distant source (Trask classification index between 1 and 2.5). They were large (Skewness asymmetry coefficient > 1), and ranged from 0.2 to 363 µm with an average value of 22.8 ± 0.6 µm in diameter. Dust particles with diameters of 5-10 µm and 10-20 µm were the most abundant, while dust diameters of 10-20 µm, 20-30 µm, and > 100 µm were the highest in volume. The domestic dust deposition rate was 19.8 ± 7.4 g/m2 per year. Household dust is one of the major sources of PM10 in the residential environment (44.6% of the total number of particles), and the studied properties of house dust are highly related to human health. Household dust is a critical element to be considered in the occurrence of respiratory and cardiovascular infections. | ||
کلیدواژهها | ||
Indoor air؛ Particulate matter؛ Size distribution؛ Particle classification؛ Deposition rate | ||
مراجع | ||
Adgate, J. L., Weisel, C., Wang, Y., Rhoads, G. G. and Lioy, P. J. (1995). Lead in House Dust: Relationships between Exposure Metrics. Environ. Res., 70(2); 134–147.
Armendáriz-Arnez, C., Edwards, R. D., Johnson, M., Rosas, I. A., Espinosa, F. and Masera, O. R. (2010). Indoor particle size distributions in homes with open fires and improved Patsari cook stoves. Atmos. Environ., 44(24); 2881–2886.
Bekö, G., Weschler, C. J., Langer, S., Callesen, M., Toftum, J. and Clausen, G. (2013). Children’s Phthalate Intakes and Resultant Cumulative Exposures Estimated from Urine Compared with Estimates from Dust Ingestion, Inhalation and Dermal Absorption in Their Homes and Daycare Centers. PLoS. One., 8(4), e62442.
Burge, P. S. (2004). Sick building syndrome. Occup. Environ. Med., 61(2); 185–190.
Carazo Fernández, L., Fernández Alvarez, R., González-Barcala, F. J. and Rodríguez Portal, J. A. (2013). Indoor Air Contaminants and Their Impact on Respiratory Pathologies. Arch. Bronconeumol., 49(1); 22–27.
Edwards, R. D., Yurkow, E. J. and Lioy, P. J. (1998). Seasonal deposition of house dusts onto household surfaces. Sci. Total. Environ., 224(1); 69–80.
Glorennec, P., Lucas, J. P., Mercat, A. C., Roudot, A. C. and Le Bot, B. (2016). Environmental and dietary exposure of young children to inorganic trace elements. Environ. Int., 97; 28–36.
Guo, Y. and Kannan, K. (2011). Comparative Assessment of Human Exposure to Phthalate Esters from House Dust in China and the United States. Environ. Sci. Technol., 45(8); 3788–3794.
Habil, M., Massey, D. D. and Taneja, A. (2015). Exposure from particle and ionic contamination to children in schools of India. Atmos. Pollut. Res., 6(4); 719–725.
Holgate, S. T. (2017). ‘Every breath we take: The lifelong impact of air pollution’ – a call for action. Clin. Med. (Lond)., 17(1); 8–12.
Hu, T., Lee, S., Cao, J., Chow, J. C., Watson, J. G., Ho, K., Ho, W., Rong, B. and An, Z. (2009). Characterization of winter airborne particles at Emperor Qin’s Terra-cotta Museum, China. Sci. Total. Environ, 407(20); 5319–5327.
Husain, M., Wu, D., Saber, A. T., Decan, N., Jacobsen, N. R., Williams, A., Yauk, C. L., Wallin, H., Vogel, U. and Halappanavar, S. (2015). Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology, 9(8); 1013–1022.
Kocbach, A., Johansen, B. V., Schwarze, P. E. and Namork, E. (2005). Analytical electron microscopy of combustion particles: A comparison of vehicle exhaust and residential wood smoke. Sci. Total. Environ., 346(1); 231–243.
Larsson, K., de Wit, C. A., Sellström, U., Sahlström, L., Lindh, C. H. and Berglund, M. (2018). Brominated Flame Retardants and Organophosphate Esters in Preschool Dust and Children’s Hand Wipes. Environ. Sci. Technol., 52(8); 4878–4888.
Lee, E. (2019). Indoor environmental quality (IEQ) of LEED-certified home: Importance-performance analysis (IPA). Build. Environ., 149, 571–581.
Leung, D. Y. C. (2015). Outdoor-indoor air pollution in urban environment: Challenges and opportunity. Front. Environ. Sci., 2.
Lewis, R. D., Ong, K. H., Emo, B., Kennedy, J., Kesavan, J. and Elliot, M. (2018). Resuspension of house dust and allergens during walking and vacuum cleaning. J. Occup. Environ. Hyg., 15(3); 235–245.
Li, W., Wang, T., Zhou, S., Lee, S., Huang, Y., Gao, Y. and Wang, W. (2013). Microscopic Observation of Metal-Containing Particles from Chinese Continental Outflow Observed from a Non-Industrial Site. Environ. Sci. Technol., 47(16); 9124–9131.
Ljung, K., Selinus, O., Otabbong, E. and Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Appl. Geochem., 21(9); 1613–1624.
Lue, Y. L., Liu, L. Y., Hu, X., Wang, L., Guo, L. L., Gao, S. Y., Zhang, X. X., Tang, Y., Qu, Z. Q., Cao, H. W., Jia, Z. J., Xu, H. Y. and Yang, Y. Y. (2010). Characteristics and provenance of dust fall during an unusual floating dust event. Atmos. Environ., 44(29); 3477–3484.
Massey, D. D., Kulshrestha, A. and Taneja, A. (2013). Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmos. Environ., 67, 278–286.
Meng, Z. and Lu, B. (2007). Dust events as a risk factor for daily hospitalization for respiratory and cardiovascular diseases in Minqin, China. Atmos. Environ., 41(33); 7048–7058.
Meyer, I., Heinrich, J. and Lippold, U. (1999). Factors Affecting Lead, Cadmium, and Arsenic Levels in House Dust in a Smelter Town in Eastern Germany. Environ. Res., 81(1); 32–44.
Morawska, L., Ayoko, G. A., Bae, G. N., Buonanno, G., Chao, C. Y. H., Clifford, S., Fu, S. C., Hänninen, O., He, C., Isaxon, C., Mazaheri, M., Salthammer, T., Waring, M. S. and Wierzbicka, A. (2017). Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Enviro. Int., 108, 75–83.
Morawska, L. and Salthammer, T. (Eds.) (2006). Indoor Environment: Airborne Particles and Settled Dust. (Weinheim: John Wiley & Sons)
Moreno-Grau, S., Cascales-Pujalte, J. A., Martínez-García, M. J., Angosto, J. M., Moreno, J., Bayo, J., García-Sánchez, A. and Moreno-Clavel, J. (2001). Relationships between Levels of Lead, Cadmium, Zinc, and Copper in Soil and Settleable Particulate Matter in Cartagena (Spain). Water. Air. Soil. Pollut., 137, 365–383.
Mukae, H., Vincent, R., Quinlan, K., English, D., Hards, J., Hogg, J. C. and van EEDEN, S. F. (2001). The Effect of Repeated Exposure to Particulate Air Pollution (PM10) on the Bone Marrow. Am. J. Res. Critical. Care. Med., 163(1); 201–209.
Pelletier, M., Bonvallot, N., Ramalho, O., Mandin, C., Wei, W., Raffy, G., Mercier, F., Blanchard, O., Le Bot, B. and Glorennec, P. (2017). Indoor residential exposure to semivolatile organic compounds in France. Environ. Int., 109, 81–88.
Petrosyan, V., von Braun, M. C., Spalinger, S. M. and von Lindern, I. H. (2006). Seasonal variations of lead concentration and loading rates in residential house dust in northern Idaho. J. Hazard. Mater., 132(1); 68–79.
Pipal, A. S., Kulshrestha, A. and Taneja, A. (2011). Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India. Atmos. Environ., 45(21) ; 3621–3630.
Rasmussen, P. E., Beauchemin, S., Nugent, M., Dugandzic, R., Lanouette, M. and Chénier, M. (2008). Influence of Matrix Composition on the Bioaccessibility of Copper, Zinc, and Nickel in Urban Residential Dust and Soil. Hum. Ecol. Risk. Assess., 14(2); 351–371.
Roberts, J. W., Clifford, W. S., Glass, G. and Hummer, P. G. (1999). Reducing Dust, Lead, Dust Mites, Bacteria, and Fungi in Carpets by Vacuuming. Arch. Environ. Contam. Toxicol., 36(4); 477–484.
Ruby, M. V., Lowney, Y. W., Bunge, A. L., Roberts, S. M., Gomez-Eyles, J. L., Ghosh, U., Kissel, J. C., Tomlinson, P. and Menzie, C. (2016). Oral Bioavailability, Bioaccessibility, and Dermal Absorption of PAHs from Soil—State of the Science. Environ. Sci. Technol., 50(5); 2151–2164.
Schwarze, P. E., Øvrevik, J., Låg, M., Refsnes, M., Nafstad, P., Hetland, R. B. and Dybing, E. (2006). Particulate matter properties and health effects: Consistency of epidemiological and toxicological studies. Hum. Exp. Toxicol., 25(10); 559–579.
Seifert, B. (1998). Die Untersuchung von Hausstaub im Hinblick auf Expositionsabschätzungen. Bundesgesundheitsblatt, 41(9); 383–391.
Stearns, R. C., Paulauskis, J. D. and Godleski, J. J. (2001). Endocytosis of Ultrafine Particles by A549 Cells. Am. J. Respir. Cell. Mol. Biol., 24(2); 108–115.
Sturm, R. (2012). Modeling the deposition of bioaerosols with variable size and shape in the human respiratory tract – A review. J. Adv. Res., 3(4); 295–304.
Thatcher, T. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmos. Environ., 29(13); 1487–1497.
Wang, X.-S., Qin, Y. and Chen, Y.-K. (2006). Heavy meals in urban roadside soils, part 1: Effect of particle size fractions on heavy metals partitioning. Environ. Geol., 50(7); 1061–1066.
Wormuth, M., Scheringer, M., Vollenweider, M. and Hunger Buhler, K. (2006). What Are the Sources of Exposure to Eight Frequently Used Phthalic Acid Esters in Europeans? Risk. Anal., 26(3); 803–824.
Yang, Y., Liu, L., Xiong, Y., Zhang, G., Wen, H., Lei, J., Guo, L. and Lyu, Y. (2016). A comparative study on physicochemical characteristics of household dust from a metropolitan city and a remote village in China. Atmos. Pollut. Res., 7(6); 1090–1100.
Yip, F., Christensen, B., Sircar, K., Naeher, L., Bruce, N., Pennise, D., Lozier, M., Pilishvili, T., Loo Farrar, J., Stanistreet, D., Nyagol, R., Muoki, J., de Beer, L., Sage, M. and Kapil, V. (2017). Assessment of traditional and improved stove use on household air pollution and personal exposures in rural western Kenya. Environ. Int., 99, 185–191.
Yue, W., Li, X., Liu, J., Li, Y., Yu, X., Deng, B., Wan, T., Zhang, G., Huang, Y., He, W., Hua, W., Shao, L., Li, W. and Yang, S. (2006). Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles. Sci. Total. Environ., 368(2); 916–925.
Zhang, Z., Kleinstreuer, C., Donohue, J. F. and Kim, C. S. (2005). Comparison of micro- and nano-size particle depositions in a human upper airway model. J. Aerosol. Sci., 36(2); 211–233. | ||
آمار تعداد مشاهده مقاله: 795 تعداد دریافت فایل اصل مقاله: 859 |