تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,127 |
تعداد دریافت فایل اصل مقاله | 97,231,192 |
ارزیابی تأثیر گشودگی فضایی کریدور شهری بر پراکنش آلاینده مونوکسید کربن با کمک CFD | ||
محیط شناسی | ||
مقاله 3، دوره 47، شماره 3، آذر 1400، صفحه 293-316 اصل مقاله (3.66 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jes.2021.327715.1008206 | ||
نویسندگان | ||
سمیرا یوسفیان1؛ محمدرضا پورجعفر* 2؛ محمدجواد مهدوی نژاد3؛ محمد مشفقی4 | ||
1دانشجوی دکترای شهرسازی، دانشکده هنر، دانشگاه تربیت مدرس، تهران، ایران | ||
2استاد، عضو هیأت علمی گروه شهرسازی، دانشکده هنر، دانشگاه تربیت مدرس، تهران، ایران | ||
3استاد، عضو هیأت علمی گروه معماری، دانشکده هنر، دانشگاه تربیت مدرس، تهران، ایران | ||
4استاد محقق، دانشکده مکانیک، دانشگاه سوگانگ کره جنوبی، سئول، کره | ||
چکیده | ||
کلانشهرها به دلیل حضور گسترده خودرو با مشکل آلودگی هوا به طور فزایندهای مواجه هستند که به طور جدی روی سلامتی افراد تأثیر میگذارد. آلودگی هوا در سطح خیابان با تعداد زیادی از متغیرها چون فرم شهری سرکار دارد. فرم شهری میتواند منجر به تشدید پدیده آلودگی یا تسهیل تهویه شود. تاکنون تأثیر برخی از شاخصهای فرم شهری بر نحوهی پخشایش آلایندهها مورد بررسی قرار گرفته است اما شاخص معدنی شدن و شاخص گشودگی فضایی تاکنون مورد بررسی واقع نشده است که در این مطالعه قرار است روابط علت و معلولی بین آنها و نحوهی پراکنش آلاینده مونوکسید کربن (CO) شناخته و بیان شود. فرضیه پژوهش این است که تغییر شاخص گشودگی فضایی و معدنی شدن بر پراکنش CO تأثیرگذار است و عکس یکدیگر رفتار میکنند. در این تحقیق از روش کمی و تکنیک مدلسازی با کمک دینامیک سیالات محاسباتی (CFD) استفاده شده و اعتبارسنجی مدل از طریق تونل باد صورت گرفته است. در فرمهای مورد مطالعه که به صورت انتزاعی در بستر شهر تهران انتخاب شدهاند، جهت باد عمود بر معبر است. نتایج نشان میدهد که هر دو شاخص اثرات آشکاری در پخشایش آلایندههای هوا در نزدیک به سطح زمین دارد. در نمونهها تهویه غالباً از طریق سقف کریدور شهری صورت میگیرد و با افزایش شاخص گشودگی فضایی و کاهش شاخص مدنی شدن در فرمها، از میزان تهویه عمودی کاسته و بر میزان تهویه در راستای افقی و از طریق دهانههای جانبی افزوده میشود. از سویی دیگر بین میزان شاخص گشودگی فضایی و میزان کسر حجمی آلاینده در ارتفاع عابر پیاده (ارتفاع 2 متر) همبستگی منفی وجود دارد و با افزایش اولی، میزان آلاینده کاهش مییابد. در نهایت میتوان گفت فرم سه مناسبترین و فرم یک نامناسبترین فرم به لحاظ شاخصهای مورد مطالعه است و توصیه میشود برای توسعههای آتی در مناطق مسکونی شهر تهران مدنظر قرار گیرد. | ||
کلیدواژهها | ||
"گشودگی فضایی"؛ "معدنی شدن"؛ "آلودگی هوا"؛ "جریان هوا"؛ "CFD" | ||
عنوان مقاله [English] | ||
Assessing the Effects of Urban Canyon's Open Space and CO Dispersion with Using CFD (A Case Study of Tehran) | ||
نویسندگان [English] | ||
Samira Yousefian1؛ Mohammadreza pourjafar2؛ Mohammadjavad Mahdavinejad3؛ Mohammad Moshfeghi4 | ||
1Department of Urban Planning, Faculty of Art and Architecture , Tarbiat Modares University, Tehran, Iran | ||
2Department of Urban Planning, Faculty of Art and Architecture , Tarbiat Modares University, Tehran, Iran | ||
3Department of Architecture, Faculty of Art , Tarbiat Modares University, Tehran, Iran | ||
4Research Professor, Department of Mechanical Engineering, Sogang University, Seoul, Korea | ||
چکیده [English] | ||
- Introduction: Metropolitans are increasingly facing the problem of air pollution due to the widespread presence of vehicles. Air pollution at the street level is a challenging issue of urban sustainable development. In addition to its sources of production, air pollution deals with a large number of factors such as urban morphology and ventilation, and urban wind. The latter can be considered as an important one since the long-term stability of air in an urban area can quickly stabilize pollutants and increase their volume in urban space. In addition, urban morphology can play a role in transfer pollution from one place to another by creating specified paths for wind. Thus, triple relationships are created between urban morphology, air flow and air pollution. Urban morphology as an independent variable directly affects the accumulation and dispersion of pollutants (as a dependent variable) and indirectly affects the air flow. In recent years, computational fluid dynamics (CFD) has been employed for assessment of a wide variety of variables and indices including: wind angle with respect to the street canyon, aspect ratio of the streets, the average height, different heights, street continuity ratio and street spatial closure ratio, neighborhood form (rectangular and square), length of the urban canyon, size of neighborhood, street architecture (roof configuration), degree of enclosure, plot ratio or floor area ratio (FAR). This study is intended to prove the existence or non-existence of a relationship between air quality (CO pollutants) and mineralization index in the neighborhood and open space index in the street canyon in Tehran (where the wind is perpendicular to the main street) with the help of CFD, which is known as a more reliable than statistical studies, due to better computational accuracy. - Materials and Methods: The CFD simulations have been performed using Ansys Fluent. The validation of the all CFD settings (including mesh arrangement and turbulence model etc.) is based on experimental analysis (wind tunnel -reduced scale (. The case study is located in the residential areas of Tehran, Iran. The GIS software and satellite images have been applied to select the case study. The dimensions of the neighborhood are 300 m wide, 300 m long, and 16 m high. The street width equals 12m. In the models, tetrahedral meshing for the inner region and hexahedral meshing for the outer region have been used (Hybrid mesh). The aspect ratio equal to 1.1 in inner region and is 1.15 in the whole geometry. The number of cells in the F1, F2, F3, and F4 is 7.3, 7.4, 7.4 and 7.5 million cells respectively for the simulation of one half of the geometry. The turbulence is simulated using RANS models, which are formed based on the temporal averaging of parameters. Due to high speed, low computational cost and acceptable accuracy of RANS models, RANS equations have been used in this research. Among the RANS models, the Realizable k-epsilon turbulence model has been selected, which has achieved better in validation part. The model is three-dimensional, isothermal, steady, and incompressible. Carbon monoxide is considered as the pollutant which is injection from two lines source (with 5cm wide and 40cm high) along the main street. The pollutant emission modeling method is the species transfer model (mixed-species). - Discussion of Results: Based on the CFD output, the maximum velocity at the pedestrian height in F1, F2, F3and F4 respectively equals 4.27, 5.31, 5.31, and 5.35 (m/s), which has been created in the corners of windward blocks. In the other forms except for F1 (it lacks an East-West street), the maximum velocity is blown at the entrances of the streets which are parallel wind. By increasing the OS index in F1, F2, and F3 (0, 0.04, 0.27), the mean velocity at the main street increases (0.73, 0.75, 0.78), but in F4, where the index equals F3, we see a decrease in velocity (0.59) due to the difference in the shape and size of the open space in the neighborhood. The longer length of this space in F4 has minimized the canalization effect of the west-east street and consequently the wind velocity in the middle of the open space (where the main street passes). With the decrease of the MI index, the average velocity in the whole domain decreases. But F1 is exception. although it has the highest index, it also has the lowest velocity, which is due to the lack of East-the West street in this form. Based on the maximum mass fraction, F4 is the worst form (0.0136). After that, F1, F3, and F2 are in the next ranks in terms of CO mass fraction with 0.0116, 0.0104, and 0.0103, respectively. The concentration of pollutants in all forms can be seen in the vicinity of the leeward wall. In F1, the accumulation of pollutants is in the middle of the street, in F2, it is inclined to the intersection, in F3, it is inclined in the vicinity of the open space, and in F4, it is in the middle of the enclosed sections of the street. Considering the average mass fraction at the height of the pedestrian in the main street and comparing it between the forms, it should be said that the F3 has the best conditions. It is 10% less than F4, 20% less than F2, and 30% lower than F1. Based on the OS index, it can be said that with the increase of the index, the amount of pollutant in the main street decreases and there is a negative correlation between them. But in F4, due to the lower wind velocity, the amount of pollutants is slightly higher than the F3. The street roof (16 meters) in the F1, F2, F3, and F4 has the highest amount of pollutant respectively and their mass fraction average equals to 0.00066, 0.00052, 0.00041, and 0.00036. So, increasing in the OS index and decreasing in MI index (F1 to F4) cause a reduction in vertical ventilation (by the street roof) as well as an increase in horizontal ventilation (through lateral openings). The amount of CO mass fraction in the longitudinal profile in the sidewalk axis in the main street (near the western wall), in F1 at the beginning and end of the street is the minimum and in the center of the street, this amount has reached its maximum value of 0.0072. In F2, at the intersection of the East-West street and the main street, CO mass fraction is drastically reduced to zero. In the F3 and F4 at the open space, the amount of co is very small. Based on the graph and contour outputs, F1 has the worst form and F4 has the best form. The average mass fraction in F4, F3, and F2 is 56.52%, 65.22%, and 82.61% of F1, respectively. - Conclusions: Findings show that in the forms in which wind direction is perpendicular to the street, ventilation is mostly done through the street's roof and by increasing the open space index and decreasing the mineralization index, the vertical ventilation decreases, and the horizontal ventilation via lateral openings increases. On the other hand, increasing the figures of the open space index, leads to a decrease in the amount of mass fraction at pedestrian height (2 meters) in the main street. Thus, a negative correlation is reported between them. In addition, also the results show a relationship between the increase in both wind velocity and ventilation rate with the decrease in the amount of CO, but the relationship could not be considered a direct relationship. The reason is that the ventilation is not only by horizontal movement of pollutants, but there are other vertical and turbulent flows too which causes ventilation. Finally, regarding the mineralization and open space indices, the third form is evaluated as the most suitable form, which should be considered in the future developments of Tehran. | ||
کلیدواژهها [English] | ||
"Open space", "Mineralization", "Air pollution", " Air flow", "CFD" | ||
مراجع | ||
اداره هواشناسی فرودگاهی مهرآباد، (1398).گزارش هواشناسی سال 1398.
بنی طالبی، ا.؛ حسنی، ا.؛ استقامت، ف.؛ ریحانیان، م.؛ اتحادیان، م.ح.؛ حسینی، و. (1393). ضرایب انتشار آلایندگی اگزوز در حالت گرم برای خودروهای بنزین سوز داخل با استاندارد آلایندگی یرو 2، گزارش فنی، هسته پژوهشی سوخت، احتراق و آلایندگی، دانشگاه صنعتی شریف.
حبیب، ف.؛ شکوهى، ع. (1391). شناخت و تحلیل مسائل شهرى با استفاده از سیستم هاى فازى، هویت شهر، شماره 10، سال 6، 17-26.
حسنوند، م. ص. و ندافی، ک. (1395). آلودگی هوا و سلامت: مروری بر مطالعات و تحقیقات جهانی درباره اثرات آلودگی هوا. تهران: موسسه نشر شهر.
شهبازی، حسین؛ بابایی، مهدی؛ افشین، حسین (1394). سیاهه انتشار آلایندگی شهر تهران برای سال مبنای 1392-جلد دوم: منابع متحرک. شرکت کنترل هوا شهرداری تهران.
مشفقی، و. یوسفیان، س. (1398). ارزیابی نقش تغییرات الگوهای ساختار کالبدی شهر بر تغییرات مکانی آلایندههای هوای شهری (مطالعه موردی: شهر تهران)" نشریه علمی پژوهشی علوم و تکنولوژی محیطزیست (پذیرش شده).
Blocken, B. (2015). Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. building and environment, 91, 219–245.
Borrego, C., Martins, H., tchepel, O., Salmim, L., Monteiro, A. & Miranda, A. I. (2006). How urban structure can affect city sustainability from an air quality perspective, environmental modelling & software: 21, 461–467.
Cionco, R. M. & Ellefsen, R. (1998). High resolution urban morphology data for urban wind flow modeling. Atmospheric environment, 32, 7–17.
CODASC, www.codasc.de
David Cooper, C. & Alley, F. C. (2002). Air pollution control: a design approach, Waveland press.
Di Sabatino, S., Buccolieri, R., Pulvirenti, B. & Britter, R.E. (2008) “Flow And Pollutant Dispersion in Street Canyons Using Fluent and Adms-Urban”. Environ Model Assess, 13, 369-381.
Edussuriya, P., Chan, A. & Malvin, A. (2014). Urban morphology and air quality in dense residential environments: correlations between morphological parameters and air pollution at street level. Journal of engineering science and technology, 9(1), 64 – 80.
Eeftens, M., Beekhuizen, J., Beelen, R., Wang, M., Vermeulen, R., Brunekreef, B., Huss, A. & Hoek, G. (2013). Quantifying urban street configuration for improvements in air pollution models. Atmospheric environment, 72, 1-9.
Gao, Z., Bresson, R., Qu, Y., Milliez, M., Munck, C. & Carissimo, B. (2018). High resolution unsteady rans simulation of wind, thermal effects and pollution dispersion for studying urban renewal scenarios in a neighborhood of toulouse, urban climate, 23, 114-130.
Hadavi, M., Pasdarshahri, H. (2019). Quantifying impacts of wind speed and urban neighborhood layout on the infiltration rate of residential buildings, Sustainable Cities And Society. https://doi.org/10.1016/j.scs.2019.101887
Hang, J., Sandberg, M. & Li, Y. (2009). Effect of urban morphology on wind condition in idealized city models. Atmospheric environment, 43, 869-876.
Hang, J., Li, Y., Sandberg, M., Buccolieri, R. & Di Sabatino, S. (2012). The Influence of Building Height Variability on Pollutant Dispersion and Pedestrian Ventilation in Idealized High-Rise Urban Areas”, Building and Environment, 56, 346-360.
Hassan, A. M., El Mokadem, A. A. F., Megahed, N.A., Abo Eleinen, O. M., (2020). Improving outdoor air quality based on building morphology: Numerical investigation. Frontiers of Architectural Research. https://doi.org/10.1016/j.foar.2020.01.001
Huang, Y. D., Hou, R. W., Liu, Z. Y., Song, Y., Ui, P. Y. & Kim, C. N. (2019). Effects of wind direction on the airflow and pollutant dispersion inside a long street canyon. Aerosol and Air Quality Research, 19, 1152-1171.
Jackson, P. (1978). The evaluation of windy environments. Journal of building and environment 13, 251- 260.
Karra, S., Malki-Epshtein, L. & Neophytou, M.K. A. (2017). Air flow and pollution in a real, heterogeneousurban street canyon: a field and laboratory study. Atmospheric Environment, 165, 370–384.
Lin, M., Hang, J., Li, Y., Luo, Z. & Sandberg, M. (2014). Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density. building and environment, 79, 152-167.
Liu, Y., H. Arp, H. P., Song, X. & Song, Y. (2016). Research on the relationship between urban form and urban smog in china. environment and planning b: planning and design, 44 (2), 328-342.
Martins, H. (2012) urban compaction or dispersion? An air quality modelling study. Atmospheric Environment, 54, 60-72.
Marulanda Tobón, A., Moncho-Esteve, I. J., Martínez-Corral, J. & Palau-Salvador, G. (2020). Dispersion of co using computational fluid dynamics in a real urban canyon in the city center of valencia (spain). Atmosphere, 11(7), 693.
Mccarty, J. & Kaza, N. (2015). Urban form and air quality in the United States. Landscape and urban planning, 139, 168-179.
Moonen, P., Dorer, V. & Carmeliet, J. (2011). Evaluation of the Ventilation Potential of Courtyards and Urban Street Canyons Using RANS and LES. Journal of Wind Engineering and Industrial Aerodynamics, 99 (4), 414-423.
Nosek, S., Fuka, V., Kukačkaa, L,. Kluková, Z., Jaňoura, Z. (2018). Street-canyon pollution with respect to urban-array complexity: the role of lateral and mean pollution fluxes. building and environment, 138, 221-234.
Oke, T.R. (1988). Street Design And Urban Canopy Layer Climate. Energy And Buildings, 11(1–3), 103–113.
Salim, S.M., Buccolieri, R., Chan, A., Di Sabatino, S. (2011). Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: comparison between rans and les. journal of wind engineering and industrial aerodynamics, 99, 103-113.
Setaihe, K., Hamza, N., Mohammed, N. A., Dudek, S., Townshend, T. (2014). CFD modeling as a tool for assessing outdoor thermal comfort conditions in urban settings in hot arid climates. journal of information technology in construction, 19, 248-269.
She, Q., Peng, X., Xu, Q., Long, L., Wei, N., Liu, M., Jia, W., Zhou, T., Han, J. & Xiang, W. (2017). Air quality and its response to satellite-derived urban form in the yangtze river delta, china. Ecological indicators, 297–306.
Shen, J., Gao, Z., Ding, W., Yu, Y. (2017). An investigation on the effect of street morphology to ambient air quality using six real. Atmospheric environment, 164, 85-101.
Tan, W., Li, C., Wang, K., Zhu, G., & Liu, L. (2019). Geometric effect of buildings on the dispersion of carbon dioxide cloud in idealized urban street canyons. Process Safety and Environmental Protection, 122, 271–280.
Tominaga, Y. & Stathopoulos, T. (2013). CFD simulation of near-field pollutant dispersion in the urban environment: a review of current modeling techniques. Atmospheric environment, 79, 716-730.
Wang, Q., Sandberg, M., Lin, Y., Yin, S., Hang, J. (2017). Impacts of urban layouts and open space on urban ventilation evaluated by concentration decay method. Atmosphere, 8, 169, 1-25.
Wen, H. & Malki-Epshtein, L. (2018). A parametric study of the effect of roof height and morphology on air pollution dispersion in street canyons. journal of wind engineering and industrial aerodynamics, 175 , 328-341.
Yang, J., Shi, B., Zheng, Y., Shi, Y., Xia, G. (2020). Urban Form and Air Pollution Disperse: Key Indexes and Mitigation Strategies. Sustainable Cities and Society, 57, 101955. | ||
آمار تعداد مشاهده مقاله: 420 تعداد دریافت فایل اصل مقاله: 814 |