تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,106,384 |
تعداد دریافت فایل اصل مقاله | 97,211,708 |
Assessment of rock fragmentation and strength properties using the Rosin-Rammler and Extended Swebrec Distribution functions parameters | ||
International Journal of Mining and Geo-Engineering | ||
مقاله 8، دوره 56، شماره 1، خرداد 2022، صفحه 53-60 اصل مقاله (780.24 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijmge.2021.281746.594811 | ||
نویسندگان | ||
Victor Abioye Akinbinu* 1؛ Gafar O Oniyide1؛ Musa Adebayo Idris2 | ||
1Federal University of Technology, Akure, Nigeria | ||
2Lulea University of Technology, Sweden | ||
چکیده | ||
This work assessed the curve fitting ability of Rosin-Rammler and Swebrec functions and the comparison of their fitting parameters with rock strength properties. The work aimed to show if there exist a relationship between the function’s distribution parameters and rock strength properties. The rock strengths properties were determined in accordance with International Society of Rock Mechanics standards. The two functions were used to reproduce sieving curves of different rocks fragmented on a laboratory scale using electric detonators. The Swebrec function reproduces the sieving curves better than Rosin-Rammler. The Rosin-Rammler curve fitting performs creditably with well fragmented rocks of poor grading or uniformly sorted fragments. The Rosin-Rammler curve fitted better to Class II rocks than the Class I rocks. The Rosin-Rammler parameters are shown to be interdependent while only factor ‘a’ and exponent ‘c’ parameters of Swebrec function are mutually dependent. The undulating exponent ‘b’ of Swebrec is related to the uniformity index, ‘n’ and characteristic size, ‘Xc’ of Rosin-Rammler. By comparison, the parameters of the two functions show correlations with rock strength properties (BTS, UCS, E and v). The uniformity index, ‘n’ is related to rock properties included in this study while the Swebrec ‘c’ parameters did not show any relationship with rock properties. The ‘Xc’ parameter of Rosin-Rammler is related to UCS, E and v. The ‘a’ and ‘b’ parameters of Swebrec function are related to BTS, UCS and v and BTS UCS and E respectively. In all cases the correlation coefficients are greater than 0.6 and can be fitted by power form function. | ||
کلیدواژهها | ||
Curve fitting؛ Fragmentation؛ Rock strength؛ Rosin-Rammler؛ Swebrec function | ||
مراجع | ||
[1] Moser, P., Olsson, M., Ouchterlony, F., & Grasedieck, A. (2003). Comparison of the blast fragmentation from lab-scale and full-scale tests at Bararp. In R. Holmberg (ed.) Proc. EFEE 2nd World Conf. on Explosives & Blasting Techn., 449-458. Rotterdam: Balkema.
[2] Akinbinu, V. A. (2017a). Multivariate analysis of fracture toughness, brittleness and blasting geometric ratios for the prediction of fragmentation output. International Journal of Rock Mechanics & Mining Sciences, 93:324-329
[3] Cunningham, C. V. B. (1987). Fragmentation estimationsmand the Kuz-Ram model -four years on. In W.L. Fourney & R.D. Dick (eds), Proceedings of Second International Symposium on Rock Fragmentation by Blasting. Bethel, Connecticut: SEM. 475-487.
[4] Lilly, P. A. (1986). An empirical method of assessing rock mass blastability. In: Proceedings of the large open pit planning conference. Parkville, Victoria; Australian IMM;. 89-92.
[5] Chung, S. H., Katsabanis, P. D. (2000). Fragmentation prediction using improved engineering formula. Int J Blast Fragment (Fragblast); 4:198-207.
[6] Moser, P. (2005). Less Fines in aggregate and industrial minerals production—results of a European research project. In: Holmberg R et al (eds) Proceedings of 3rd EFEE world conference on explosives and blasting. EFEE, UK. 567-574
[7] Sanchidrian, J. A., Segarra, P., Ouchterlony, F., & Lopez, L. M. (2009). On the accuracy of fragment size measurement by image analysis in combination with some distribution functions. Rock Mech Rock Engng, 42(1): 95-116.
[8] Ouchterlony, F. (2003). ‘Bend it like Beckham’ or a simple yet far-ranging fragment size distribution for blasted and crushed rock. ‘Less Fines’ Technical Report 78. EU Project GRD-2000-25224
[9] Ouchterlony F. (2010). Fragmentation characterization; the Swebrec function and its use in blast engineering Rock Fragmentation by Blasting -Sanchidrián (ed) Taylor & Francis Group, London, ISBN 978-0-415-48296-7
[10] Blair, D. P. (2004). Curve-fitting schemes for fragmentation data. Fragblast-Int. J. Blast. Fragment, 8(3): 137-150.
[11] Sanchidria´n, J. A., Ouchterlony, F., Segarra, P., Moser, P. (2014) Size distribution functions for rock fragments. Int J Rock Mech Min Sci, 71:381-394
[12] Akinbinu V. A. (2017b). Relationship of brittleness and fragmentation in brittle compression. Engineering Geology, 221: 82-90
[13] Akinbinu, V. A. (2016). Class I and Class II rocks: implication of self-sustaining fracturing in brittle compression. Geotech. Geol. Eng., 34: 877-887. http://dx.doi.org/10.1007/s10706-016-0011-0.
[14] International Society for Rock Mechanics Commission on Testing Methods. In Ulusay R., Hudson JA. (Eds.), The pre failure and post failure ISRM suggested methods for rock characterization, testing and monitoring: 2007; 1974-2006. Ankara, Turkey: Commission on Testing Methods, International Society of Rock Mechanics, Pergamon Press Ltd. | ||
آمار تعداد مشاهده مقاله: 484 تعداد دریافت فایل اصل مقاله: 636 |