تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,814 |
تعداد دریافت فایل اصل مقاله | 97,223,544 |
واکنش عملکرد و اجزای عملکرد پنبه به تعدیلکنندههای تنش در شرایط شور در تاریخ کاشت رایج و تأخیری | ||
به زراعی کشاورزی | ||
مقاله 6، دوره 24، شماره 4، دی 1401، صفحه 1101-1116 اصل مقاله (1.04 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2022.329260.2603 | ||
نویسندگان | ||
معصومه شنوایی زارع1؛ محمد آرمین* 2؛ حمید مروی3 | ||
1گروه زراعت و اصلاح نباتات، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران. رایانامه: shenavaeimasome@gmail.com | ||
2نویسنده مسئول، گروه زراعت و اصلاح نباتات، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران. رایانامه: armin@iaus.ac.ir | ||
3گروه زراعت و اصلاح نباتات، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران. رایانامه: hamidmarvi@yahoo.com | ||
چکیده | ||
امروزه استفاده از تعدیلکنندههای تنش بهعنوان یک راهکار مفید و کمهزینه برای کاهش اثرات تنشهای محیطی مورد توجه پژوهشگران قرار گرفته است. بهمنظور بررسی اثر نوع تعدیلکننده مصرفی بر عملکرد و اجزای عملکرد پنبه در شرایط شور در دو تاریخ کشت متفاوت، آزمایشی بهصورت کرتهای یکبار خردشده در قالب طرح بلوکهای کامل تصادفی با سه تکرار در دانشگاه آزاد اسلامی واحد سبزوار در دو سال 1397 و 1398 انجام شد. فاکتورهای موردبررسی تاریخ کاشت (کشت رایج و تأخیری) بهعنوان کرت اصلی و نوع تعدیلکننده تنش (شاهد، سالیسیلیکاسید mM4 و 2، گلایسین بتائین mM 100 و 50 و سدیم نیتروپروساید μM 200 و 100) بهعنوان کرت فرعی بودند. بالاترین تعداد غوزه در بوته در سال اول با محلولپاشی سالیسیلیکاسید mM2 (1/10) و در سال دوم با محلولپاشی سالیسیلیکاسید mM4 (58/7) بهدست آمد. درحالیکه در کشت رایج محلولپاشی با سالیسیلیکاسید mM4 سبب افزایش عملکرد وش (6/45 درصد) شد، اما در کشت تأخیری عملکرد وش واکنشی به نوع تعدیلکننده نشان نداد. در سال اول محلولپاشی با سدیم نیتروپروساید μM100 هم در کشت رایج و هم در کشت تأخیری بالاترین عملکرد الیاف را داشت، اما در سال دوم محلولپاشی با سالیسیلیکاسید mM2 عملکرد الیاف بیشتری را تولید کرد. در مجموع نتایج این آزمایش نشان داد بیشترین عملکرد وش در پنبه در شرایط شور در کشت رایج و محلولپاشی سالیسیلیکاسید mM4 بهدست میآید. | ||
کلیدواژهها | ||
تاریخ کاشت؛ تنش شوری؛ عملکرد وش؛ محافظهای گیاهی؛ محلولپاشی | ||
عنوان مقاله [English] | ||
Response of Yield and Yield Component of Cotton to Stress Modulator in the Saline Condition in Early and Late Planting Dates | ||
نویسندگان [English] | ||
Masome shenavaei zare1؛ Mohammad Armin2؛ Hamid Marvi3 | ||
1Department of Agronomy and Plant Breeding, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran. E-mail: shenavaeimasome@gmail.com | ||
2Corresponding Author, Department of Agronomy and Plant Breeding, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran. E-mail: moh_armin@yahoo.com | ||
3Department of Agronomy and Plant Breeding, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran. E-mail: hamidmarvi@yahoo.com | ||
چکیده [English] | ||
Nowadays, the use of stress modulators as a useful and low-cost solution to reduce the effects of environmental stress has been considered by researchers. In order to investigate the effects of stress modulator’s foliar application in different planting dates on yield and yield components of cotton, an experiment has been conducted as split-plot factorial in a randomized complete block design with three replications in Sabzevar Islamic Azad University in 2017 and 2018. Factors include planting date (early and late) as the main plot and type of stress modulator (control, salicylic acid (SA) 2 and 4 mM, glycine betaine (GB) 50 and 100 mM and sodium nitroprusside (SNP) 100 and 200 μM) as the sub-plots. Foliar application of 2 mM SA in the first year and 4mM SA in the second year produce the highest number of bolls per plant (10.1 and 7.58, respectively). In contrast, 4 mM SA spraying in early planting date increases seed cotton yield (45.6%), but in late planting date, seed cotton yield does not respond to the stress modulator application. In the first year, 100 μM SNP foliar application has the highest lint yield in both early and late planting dates, but in the second year, 2 mM SA foliar application produce higher lint yields. Overall, the results of this experiment show that the highest yield of cotton in saline conditions are obtained in sowing at the appropriate date and foliar application of 4 mM salicylic acid. | ||
کلیدواژهها [English] | ||
Foliar application, Phytoprotectants, Planting date, Salinity stress, Seed cotton yield | ||
مراجع | ||
Abbas, G., Younis, H., Naz, S., Fatima, Z., Hussain, S., Ahmed, M., & Ahmad, S. (2019). Effect of planting dates on agronomic crop production. In: Agronomic crops. Springer: pp: 131-147. https://doi.org/10.1007/978-981-32-9151-5_8 Afzal, M. N., Tariq, M., Ahmed, M., Abbas, G., & Mehmood, Z. (2020). Managing planting time for cotton production. In: Cotton production and uses. Springer: pp: 31-44. https://doi.org/10.1007/978-981-15-1472-2_3 Ahmed, N., Chaudhry, U. K., Ali, M. A., Ahmad, F., Sarfraz, M., & Hussain, S. (2020). Salinity tolerance in cotton. In: Cotton production and uses. Springer: pp: 367-391. https://doi.org/10.1007/978-981-15-1472-2_19 Akramghaderi, F., Latifi, N., Rezaei, J., & Soltani, A. (2003). Effects of planting date on the phenology and morphology of three cotton cultivars in gorgan. Iranian Journal of Agriculture Science, 34(1), 221-230. (In Persian). Ali, A., Qamar, R., Safdar, M. E., Saleem, S., Ullah, S., Javed, M. A., & Hasan, S. W. (2021). Development and growth: Influence of sowing dates on performance of cotton cultivars. Pakistan Journal of Agricultural Research, 34(1), 23-28. https://doi.org/10.17582/journal.pjar/2021/34.1.23.28 Astaneh, R. K., Bolandnazar, S., Nahandi, F. Z., & Oustan, S. (2019). Effects of selenium on enzymatic changes and productivity of garlic under salinity stress. South African Journal of Botany, 121, 447-455. https://doi.org/10.1016/j.sajb.2018.10.037 Bagherabadi, H., Armin, M., & Filekesh, E. (2019). The effect of sowing date on yield and yield components of cotton planted in ultra narrow rows and conventional rows. Iranian Journal of Cotton Researches, 7(1), 1-14. (In Persian). Bakht, J., Khan, M. J., Shafi, M., Khan, M. A., & Sharif, M. (2012). Effect of salinity and aba application on proline production and yield in wheat genotypes. Pakistan Journal of Botany, 44(3), 873-878. Barros, T. C., de Mello Prado, R., Roque, C. G., Arf, M. V., & Vilela, R. G. (2019). Silicon and salicylic acid in the physiology and yield of cotton. Journal of plant nutrition, 42(5), 458-465. https://doi.org/10.1080/01904167.2019.1567765 Bednarz, C. W., Shurley, W. D., & Anthony, W. S. (2002). Losses in yield, quality, and profitability of cotton from improper harvest timing. Agronomy Journal, 94(5), 1004-1011. https://doi.org/10.2134/agronj2002.1004 Bednarz, C. W., Shurley, W. D., Anthony, W. S., & Nichols, R. L. (2005). Yield, quality, and profitability of cotton produced at varying plant densities. Agronomy Journal, 97(1), 235-240. Borzoyi, Z., Armin, M., & Marvi, H. (2021). Agrophysiological responses of cotton to time and type of stress moderators on different planting date under saline conditions. Crop Science Research in Arid Regions, In Press. (In Persian). Chen, H., & Jiang, J.-G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18, 309-319. https://doi.org/10.1139/A10-014 Davidonis, G. H., Johnson, A. S., Landivar, J. A., & Fernandez, C. J. (2004). Cotton fiber quality is related to boll location and planting date. Agronomy Journal, 96(1), 42-47. https://doi.org/10.2134/agronj2004.0042 Dong, H., Li, W., Tang, W., Li, Z., Zhang, D., & Niu, Y. (2006). Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the yellow river valley of china. Field Crops Research, 98(2-3), 106-115. https://doi.org/10.1016/j.fcr.2005.12.008 Dong, Y. J., Jinc, S. S., Liu, S., Xu, L. L., & Kong, J. (2014). Effects of exogenous nitric oxide on growth of cotton seedlings under nacl stress. Journal of Soil Science and Plant Nutrition, 14(1), 1-13. https://doi.org/10.4067/s0718-95162014005000001 El-Beltagi, H. S., Ahmed, S. H., Namich, A. A. M., & Abdel-Sattar, R. R. (2017). Effect of salicylic acid and potassium citrate on cotton plant under salt stress. Fresenius Environmental Bulletin, 26, 1091-1100. El Sabagh, A., Omar, A. M., El Menshawi, M., & El Okkiah, S. (2018). Foliar application of organic compounds stimulate cotton (Gossypium barbadense L.) to survive late sown condition. Open Agriculture, 3(1), 684-697. https://doi.org/10.1515/opag-2018-0072 Heitholt, J., Schmidt, J., & Mulrooney, J. E. (2001). Effect of foliar-applied salicylic acid on cotton flowering, boll retention, and yield. Materials and Methods, 46 (2), 105-109. Hussein, M., Balbaa, L., & Gaballah, M. (2007). Salicylic acid and salinity effects on growth of maize plants. Research Journal of Agriculture and Biological Sciences, 3(4), 321-328. Iqbal, M., & Khan, M. A. (2011). Response of cotton genotypes to planting date and plant spacing. Frontiers of Agriculture in China, 5(3), 262-267. https://doi.org/10.1007/s11703-011-1099-x Jafaraghaei, M., & Jalali, A. H. (2012). Effect of irrigation-water salinity on yield and water use efficiency of three cultivars of cotton (Gossypium hirsutum L.). Journal of Crop production and processing, 2(5), 97-108. (In Persian). Kaur, P., Bhagria, T., Mutti, N. K., Rinwa, A., Mahajan, G., &Chauhan, B. S. (2019). Cotton production in australia. In K. Jabran and B. S. Chauhan (Ed.), Cotton Production: 341-357. https://doi.org/10.1002/9781119385523.ch16 Khan, A., Najeeb, U., Wang, L., Tan, D. K. Y., Yang, G., Munsif, F., Ali, S., & Hafeez, A. (2017). Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crops Research, 209, 129-135. https://doi.org/10.1016/j.fcr.2017.04.019 Kim, Y., Mun, B.-G., Khan, A. L., Waqas, M., Kim, H.-H., Shahzad, R., Imran, M., Yun, B.-W., & Lee, I.-J. (2018). Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. Plos one, 13(3), e0192650. https://doi.org/10.1371/journal.pone.0192650 Liu, S., Dong, Y., Xu, L., & Kong, J. (2014). Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulation, 73(1), 67-78. https://doi.org/10.1007/s10725-013-9868-6 Lou, Y., Sun, X., Chao, Y., Han, F., Sun, M., Wang, T., Wang, H., Song, F., & Zhuge, Y. (2019). Glycinebetaine application alleviates salinity damage to antioxidant enzyme activity in alfalfa. Pakistan Journal of Botany, 51(1), 19-25. Ma, X., Wang, Y., Xie, S., Wang, C., & Wang, W. (2007). Glycinebetaine application ameliorates negative effects of drought stress in tobacco. Russian Journal of Plant Physiology, 54(4), 472-479. https://doi.org/10.1134/s1021443707040061 Mauget, S., Ulloa, M., & Dever, J. (2019). Planting date effects on cotton lint yield and fiber quality in the us southern high plains. Agriculture, 9(4), 82-91. https://doi.org/10.3390/agriculture9040082 Mehrabadi, H. R. (2017). Effect of different planting dates and methods on quantity and quality traits of varamin cotton cultivar. Journal of Crop production and processing, 7(2), 61-72. (In Persian). Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736 Panjeh Koub, A., Galeshi, S. A., Zeynali, E., & Ghajari, A. A. G. (2008). Effect of planting date and plant density on morphological characteristics of cotton (Gossypium hirsutum cv. Siokra). Journal of Agricultural Sciences and Natural Resources, 14(5), 25-38. (In Persian). Pirasteh, H., Emami, Y., Rousta, M., & Hashemi, S. (2016). Effect of salicylic acid on biochemical attributes and grain yield of barley (Horedum vulgare L. cv. nosrat) under saline conditions. Iranian Journal of Crop Sciences, 18(3), 232-244. (In Persian). Savari, A., Fotokian, M. H., & Barzali, M. (2010). Evaluation of glycine betaine effects on some agronomic traits of cotton. Jouran of Agronomy Sciences, 1(1), 67-76. (In Persian). Sedighi, E., Sirousmehr, A., Ramezani, M., Asgharipour, M. R., & Esmaelian, Y. (2012). Investigation the yield and qualitative traits of cotton under different planting dates in barley-cotton double cropping system. Journal of Iranian Plant Echophysiological Research, 6(4), 26-36. (In Persian). Shahverdi, M. A., Omidi, H., & Damalas, C. A. (2020). Foliar fertilization with micronutrients improves stevia rebaudiana tolerance to salinity stress by improving root characteristics. Brazilian Journal of Botany, 43(1), 55-65. https://doi.org/10.1007/s40415-020-00588-6 Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant science, 164(3), 317-322. Sheteiwy, M. S., Shao, H., Qi, W., Daly, P., Sharma, A., Shaghaleh, H., Hamoud, Y. A., El‐Esawi, M. A., Pan, R., & Wan, Q. (2021). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Journal of the Science of Food and Agriculture, 101(5), 2027-2041. https://doi.org/10.1016/s0168-9452(02)00415-6 Siddiqui, M. H., Alamri, S. A., Al-Khaishany, Y., Al-Qutami, M. A., & Ali, H. M. (2018). Ascorbic acid application improves salinity stress tolerance in wheat. Chiang Mai Journal of Science, 45(3), 1296-1306. Singh, M., Kumar, J., Singh, V., & Prasad, S. (2014). Proline and salinity tolerance in plants. Biochem Pharmacol, 3(6), 2167-0501.1000. https://doi.org/10.4172/2167-0501.1000e170 Soleimannejad, Z., Abdolzadeh, A., & Sadeghipour, H. R. (2019). Beneficial effects of silicon application in alleviating salinity stress in halophytic puccinellia distans plants. Silicon, 11(2), 1001-1010. https://doi.org/10.1007/s12633-018-9960-7 Vázquez, M. N., Guerrero, Y. R., de la Noval, W. T., Gonzalez, L. M., & Zullo, M. A. T. (2019). Advances on exogenous applications of brassinosteroids and their analogs to enhance plant tolerance to salinity: A review. Australian Journal of Crop Science, 13(1), 115-126. Wrather, J., Phipps, B., Stevens, W., Phillips, A., & Vories, E. (2008). Cotton planting date and plant population effects on yield and fiber quality in the mississippi delta. Journal of Cotton Science, 12(1), 1-10. Xu, J., Liu, T., Yang, S., Jin, X., Qu, F., Huang, N., & Hu, X. (2019). Polyamines are involved in gaba-regulated salinity-alkalinity stress tolerance in muskmelon. Environmental and Experimental Botany, 164, 181-189. https://doi.org/10.1016/j.envexpbot.2019.05.011 Ye, Y., Wang, W., Zheng, C., Fu, D., Liu, H., & Shen, X. (2017). Foliar-application of α-tocopherol enhanced salt tolerance of carex leucochlora. Biologia Plantarum, 61(3), 565-570. Yildirim, E., Turan, M., & Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of plant nutrition, 31(3), 593-612. Zare, M. S., Armin, M., & Marvi, H. (2021). Physiological responses of cotton to stress moderator application on different planting date under saline conditions. Iranian Journal of Science and Technology, Transactions A: Science, 45(1), 11-25. Zhou, Y., Diao, M., Chen, X., Cui, J., Pang, S., Li, Y., Hou, C., & Liu, H.-y. (2019). Application of exogenous glutathione confers salinity stress tolerance in tomato seedlings by modulating ions homeostasis and polyamine metabolism. Scientia Horticulturae, 250, 45-58. Zhu, G., An, L., Jiao, X., Chen, X., Zhou, G., & McLaughlin, N. (2019). Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chilean journal of agricultural research, 79(3), 415-424. | ||
آمار تعداد مشاهده مقاله: 419 تعداد دریافت فایل اصل مقاله: 258 |