- Marsden, J. O., House, C. I. (2006). The chemistry of gold extraction. second ed., Society for mining, metallurgy, and exploration, Colorado, USA.
- Salarirad, M. M., & Behnamfard, A. (2010). The effect of flotation reagents on cyanidation, loading capacity and sorption kinetics of gold onto activated carbon. Hydrometallurgy, 105 (1-2), 47-53.
- Behnamfard, A., Chegni, K., Alaei, R., & Veglio, F. (2019). The effect of thermal and acid treatment of kaolin on its ability for cyanide removal from aqueous solutions. Environmental Earth Sciences, 78(14), 1-12.
- Deschenes, G. (2005). Technological development in the cyanidation of gold. Proceeding of the Canadian mineral processors, Canada.
- Rounds, S. A., Wilde, F.D., Ritz, G. F. (2013). Dissolved oxygen. Book 9, chap. A6, sec. 6.2, U.S. Geological Survey Techniques of Water-Resources Investigations, USA.
- Buyukbingol, E., Sisman, A., Akyildiz, M., Alparslan, F. N., Adejare, A. (2007). Adaptive neuro-fuzzy inference system (ANFIS): A new approach to predictive modeling in QSAR applications: A study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists. Bioorganic and Medicinal Chemistry,15, 4265–4282.
- Pan, L., Yang, S. X. (2007). Analysing livestock farm odour using an adaptive neuro-fuzzy approach. Biosystems Engineering, 97, 387 – 393.
- Tutmez, B., Hatipoglu, Z., Kaymak, U. (2006). Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system. Computational Geosciences, 32, 421–433.
- Behnamfard, A., Alaei, R. (2017). Estimation of coal proximate analysis factors and calorific value by multivariable regression method and adaptive neuro-fuzzy inference system (ANFIS). International Journal of Mining and Geo-Engineering, 51(1), 29-35.
- Behnamfard, A., Veglio, F. (2019). Estimation of xanthate decomposition percentage as a function of pH, temperature and time by least squares regression and adaptive neuro-fuzzy inference system. International Journal of Mining and Geo-Engineering, 53(2), 157-163.
- Jalalifar, H., Mojedifar, S., Sahebi, A. A., Nezamabadi-pour, H. (2011). Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system. Computers and Geotechnics, 38, 783–790.
- Jang, J. (1993). ANFIS: Adaptive network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665-683.
- Ghoush, M. A., Samhouri, M., Al-Holy, M., Herald, T. (2008). Formulation and fuzzy modeling of emulsion stability and viscosity of a gum–protein emulsifier in a model mayonnaise system. Journal of Food Engineering, 84, 348–357.
- Qin, H., Yang, S. X. (2007). Adaptive neuro-fuzzy inference systems based approach to nonlinear noise cancellation for images. Fuzzy Sets and Systems, 158, 1036 – 1063.
- Rebouh, S., Bouhedda, M., Hanini, S. (2016). Neuro-fuzzy modeling of Cu(II) and Cr(VI) adsorption from aqueous solution by wheat straw. Desalination and Water Treatment, 57(14), 6515-6530.
- Roohian, H., Abbasi, A., Hosseini, Z., Jahanmiri, A. (2014). Comparative Modeling and analysis of the mass transfer coefficient in a turbulent bed contactor using artificial neural network and adaptive neuro-fuzzy inference systems. Separation Science and Technology, 49(10), 1574-1583.
- Shu, C., Ouarda, T. B. M. J. (2008). Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. Journal of Hydrology, 349, 31– 43.
- Wu, G. D., Lo, S. L. (2008). Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system. Engineering Applications of Artificial Intelligence, 21, 1189– 1195.
- Ubeyli, E. D., Guler, I. (2006). Adaptive neuro-fuzzy inference system to compute quasi-TEM characteristic parameters of micro shield lines with practical cavity sidewall profiles. Neurocomputing, 70, 296–304.
- Zubaidi, S. L., Al-Bugharbee, H., Ortega-Martorell, S., Gharghan, S. K., Olier, I., Hashim, K. S., Al-Bdairi, N. S. S., Kot, P. (2020). A novel methodology for prediction urban water demand by wavelet denoising and adaptive neuro-fuzzy inference system approach. Water, 12(6), 1628.
- Zeinalnezhad, M., Chofreh, A. G., Goni, F. A., & Klemeš, J. J. (2020). Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System. Journal of Cleaner Production, 261, 121218.
- Shariati, M., Mafipour, M. S., Haido, J. H., Yousif, S. T., Toghroli, A., Trung, N. T., & Shariati, A. (2020). Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS). Steel Compos Struct, 34(1), 155.
- Jang, J.S.R. (1997). Chapter2: Fuzzy Sets. In: Jang, J.S.R., Sun, C.T., Mizutani, E. (Eds.). Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. USA: Prentice-Hall Upper Saddle River, pp. 24-28. Available at: http://www.soukalfi.edu.sk/01_NeuroFuzzyApproach.pdf
- Aqil, M., Kita, I., Yano, A., & Nishiyama, S. (2007). A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. Journal of hydrology, 337(1-2), 22-34.
- Surajudeen-Bakinde, N., Faruk, N., Oloyede, A., Abdulkarim, A., Olawoyin, L., Popoola, S., & Adetiba, E. (2021). Effect of Membership Functions and Data Size on the Performance of ANFIS-Based Model for Predicting Path Losses in the VHF and UHF Bands. Journal of Engineering Research, 10(1A), 203-226. Available at: https://kuwaitjournals.org/jer/index.php/JER/article/view/10457
- Ali, O.A.M., Ali, A.Y., & Sumait, B.S. (2015). Comparison between the effects of different types of membership functions on fuzzy logic controller performance. International Journal of Emerging Engineering Research and Technology, 3(3), 76-83.
- Talpur, N., Salleh, M. N. M., & Hussain, K. (2017). An investigation of membership functions on performance of ANFIS for solving classification problems. In: IOP Conference Series: Materials Science and Engineering, 226(1), 1-7. Available at:https://iopscience.iop.org/article/10.1088/1757899X/226/1/012103/pdf
|