تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,261 |
تعداد دریافت فایل اصل مقاله | 97,222,508 |
توانایی شاخصهای گیاهی حاصل از دادههای سنجش از دور به منظور شناسایی و تفکیک مناطق سوخته شده در مراتع نیمه استپی استان چهار محال بختیاری | ||
نشریه علمی - پژوهشی مرتع و آبخیزداری | ||
دوره 74، شماره 4، اسفند 1400، صفحه 837-850 اصل مقاله (1.09 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jrwm.2021.323095.1588 | ||
نویسندگان | ||
علی محمدیان* 1؛ اسماعیل اسدی بروجنی2؛ عطاالله ابراهیمی2؛ پژمان طهماسبی2؛ علی اصغر نقی پور برج3 | ||
1دانشجوی دکتری علوم مرتع دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد | ||
2دانشیار و عضو هیات علمی دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد | ||
3استادیار و عضو هیات علمی دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد | ||
چکیده | ||
امروزه استفاده از تصاویر ماهوارهای از کم هزینهترین و سریعترین روشهای ارزیابی مراتع میباشد. شاخصهای گیاهی از مهمترین ابزارهای سنجش از دوری هستند که جهت نظارت و ارزیابی تغییرات پوشش گیاهی بخصوص در دورههای زمانی پس از آتشسوزی و تهیه نقشههای مناطق آتشسوزی شده در مراتع کاربرد فراوان دارند. پژوهش حاضر با توجه به اهمیت و وسعت مراتع همچنین افزایش تعدد آتشسوزیهای سالیان اخیر در مراتع نیمهاستپی کشور بویژه مراتع استان چهارمحال بختیاری انجام گردید. هدف از این پژوهش تفکیک و شناسایی مناطق سوخته شده در دورههای 3-1 و 5-3 سال پس از آتشسوزی با استفاده از شاخصهای طیفی بمنظور اتخاذ برنامه مدیریتی مناسب پس از آتشسوزی در این مناطق میباشد. پس از محاسبه شاخصهای طیفی، پارامتر آماری M بمنظور تعیین توان تفکیکپذیری مناطق آتشسوزی شده از مناطق مجاور محاسبه گردید. نتایج بدست آمده نشان میدهد که در مراتع نیمهاستپی کشور به منظور شناسایی و تفکیک محدوده مناطق سوخته شده که دارای قدمت 1 تا 3 سال پس از آتشسوزی میباشند کاربرد شاخصهای طیفی NBRT، NBR و CSI میتواند با توجه به کارآیی بالا و توانایی مناسب در تفکیک این محدودهها قابل توصیه باشد. همچنین برای شناسایی و تفکیک محدودههای سوخته شده که قدمت 3 تا 5 سال را دارا میباشند کاربرد شاخصهای طیفی T.C. Brightness و NBRT میتوانند نتایج قابل قبولی را ارائه دهند. شاخص NBRT از بین شاخصهای مورد بررسی برای هر دو قدمت آتش در مراتع نیمهاستپی مورد مطالعه بمنظور تفکیکپذیری مناطق سوخته شده از مناطق مجاور توانایی بالایی داشته و قابل توصیه میباشد. | ||
کلیدواژهها | ||
تفکیکپذیری؛ چهار محال بختیاری؛ شاخصهای طیفی؛ منطقه سوخته؛ نیمه استپی | ||
عنوان مقاله [English] | ||
Capability of derived vegetation indices from remotely sensed data for burned area discrimination in semi-steppic rangeland (case study of CHB province, Iran) | ||
نویسندگان [English] | ||
Ali Mohammadian1؛ Esmaeil Asadi Borujeni2؛ Ataollah Ebrahimi2؛ Pejman Tahmasebi2؛ Ali Asghar Naghipour borj3 | ||
1PhD Candidate of Range Management, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Iran | ||
2- Associate prof, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Iran | ||
3Assistant prof, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Iran | ||
چکیده [English] | ||
Nowadays, using satellite imagery is one of the fastest and lowest-cost methods in rangeland assessment. Also, remote sensing-based vegetation indices are among the most widely used tools to assess and monitor vegetation changes, especially in the post-fire period, and to map the burned regions in rangelands. The present study was conducted considering the importance and extent of rangelands and the recently increased prevalence of fires in the semi-steppe rangelands of Iran, especially in Chaharmahal and Bakhtiari Province. The main objective of this study was to distinguish and identify the burned areas during 1-3 year and 3-5 year periods to adopt an appropriate post-fire management program in these areas using spectral indices. After calculating the spectral indices, the M statistical parameter was determined to designate the separation capability of the burned areas from the adjacent ones. According to the findings, using NBRT, NBR, and CSI indices is recommended to identify and distinguish the burned areas 1-3 years after the fire from the adjacent areas in semi-steppe rangeland regions of Iran. Overall, these indices are of high efficiency in separating these ranges. Moreover, T.C. Brightness and NBRT indices can efficiently identify and separate the burned areas 3-5 years after the fire. Among the studied indices for both periods of fire in the studied semi-steppe rangelands, the NBRT index showed a high potential for identifying the burned area from the adjacent areas. | ||
کلیدواژهها [English] | ||
spectral indices, separability, semi-steppe, burned area, Chaharmahal Bakhtiari | ||
مراجع | ||
[1] Ahmadi, M. and Narangifard, M. (2015). Quality assessment and detection of forest area changes using satellite images (Case study: Rustam, Fars). Journal of RS and GIS for Natural, 6(3), 87-100. [2] Atak, B.K. and Tonyaloglu, E.E. (2020). Evaluating spectral indices for estimating burned areas in the case of Izmir/Turkey. Eurasian Journal of Forest Science, 8(1), 63-73. [3] Baig, M.H.A., Zhang, L., Shuai, T. and Tong, Q. (2014). Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sensing Letters, 5(5), 423-431. [4] Bing, L.u., Yuhong, He. and Alexander, T. (2016). Evaluation of spectral indices for estimating burn severity in semiarid grasslands. International Journal of Wildland Fire, 25, 147-157. [5] Broich, M., Tulbure, M.G., Verbesselt, J., Xin, Q. and Wearne, J. (2018). Quantifying Australias dryland vegetation response to flooding and drought at sub-continental scale. Remote Sensing of Environment, 212(1), 60-78. [6] Chen X., Vogelmann J. E., Rollins M., Ohlen D., Key C. H., Yang L., Huang C. and Shi, H. (2011). Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. International Journal of Remote Sensing, 32(23), 7905-7927. [7] Chuvieco E., Martin M. P. and Palacios, A. (2002). Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing, 23(23), 5103-5110. [8] Fornaca, D., Ren, G. and Xiao, W. (2018). Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China. Journal of Remote Sens, 10(8), 4-21. [9] Gerard, F., Plummer, S., Wadsworth, R., Sanfeliu, A.F., Iliffe, L., Balzter, H. and Wyatt, B. (2003). Forest fire scar detection in the boreal forest with multitemporal spot-vegetation data. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2575–2585. [10] Gu, Y. and Wylie, B.K. (2015). Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations. Remote Sensing of Environment, 171, 291-298. [11] Higginbottom, T.P., Symeonakis, E., Meyer, H. and Van Der Linden, S. (2018). Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data. ISPRS Journal of Photogrammetry and Remote Sensing, 139, 88-102. [12] Hill, M.J. (2013). Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect. Remote Sensing of Environment, 137, 94-111. [13] Hislop, S., Jones, S., Soto-Berelov, M., Skidmore, A.K., Haywood, A. and Nguyen, T. (2018). Using Landsat Spectral Indices in Time-Series to Assess Wildfire Disturbance and Recovery. Remote Sensing, 10, 2-17. [14] Holden, Z., Smith, A., Morgan, P., Rollins, M. and Gessler, P. (2005). Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. International Journal of Remote Sensing, 26, 4801–4808. [15] Iranmehr, M., Pourmanafi, S. and Soffianian, A. (2015). Ecological monitoring and assessment of spatial-temporal changes in land cover with an emphasis on agricultural water consumption in Zayandeh Rood Region. Iranian Journal of Eco Hydrology, 2(1), 23-28. [16] Kavzoglu, T., Erdemir, M.Y. and Tonbul, H. (2016). Evaluating performances of spectral indices for burned area mapping using object-based image analysis. Proceedings of Spatial Accurac, 366, 162-168. [17] Kawamura, K., Akiyama, T., Yokota, H.O., Tsutsumi, M., Yasuda, T., Watanabe, O. and Wang, S. (2005). Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agriculture, Ecosystems & Environment, 107(1), 83-93. [18] Kaufman, Y.J. and Remer, L.A. (1994). Detection of Forests Using Mid-IR Reflectance: An Application for Aerosol Studies. IEEE transactions on geoscience and Sensing, 32, 672–683. [19] Key, C.H. and Benson, N.C. (2006). Landscape assessment: remote sensing of severity, the Normalized Burn Ratio. In: Lutes, D.C. (Ed.), FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service, Rocky Mountain Research Station, Ogden,UT, USA General Technical Report, RMRS-GTR-164-CD:LA1-LA51. [20] Kennedy, R.E., Yang, Z. and Cohen, W.B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms. Remote Sensing of Environment, 114, 2897–2910. [21] Lambin, E.F., Goyvaerts, K. and Petit, C. (2003). Remotely-sensed indicators of burning efficiency of savannah and forest fires. International Journal of Remote Sensing, 24, 3105–3118. [22] Lasaponara, R. (2006). Estimating spectral separability of satellite derived parameters for burned areas mapping in the Calabria region by using SPOT-Vegetation data. Ecological Modelling, 196, 265–270. [23] Libonati, R., DaCamara, C.C., Pereira, J.M.C. and Peres, L.F. (2011). On a new coordinate system for improved discrimination of vegetation and burned areas using MIR/NIR information. Remote Sensing of Environment, 115, 1464–1477. [24] Llamas, P.G., Seoane, S.S., Guisuraga, J.M.F., Garcia, V.F., Manso, A.F., Quintano, C., Taboada, A., Marcos, E. and Calvo, L. (2019). Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems , International Journal of Applied Earth Observation and Geoinformation, 80, 137–144. [25] Martin, M.P., Gomez, I. and Chuvieco, E. (2005). Performance of a burned-area index (BAIM) for mapping Mediterranean burned scars from MODIS data. In: Riva J, Perez-Cabello F, Chuvieco E (eds) Proceedings of the 5th international workshop on remote sensing and GIS applications to forest fire management: fire effects assessment, pp 193–198. [26] Marshall, G.S. (2005). Drought detection and quantification using field-based spectral measurements of vegetation in semi-arid regions. [27] Meng, R., Dennison, P.E., D’Antonio, C.M. and Moritz, M.A. (2014). Remote Sensing Analysis of vegetation recovery following short-interval fires in southern California shrublands. Journal PLOS ONE 9(10), e110637. [28] Melchiori, A.E., Candido, P., Libonati, R., Morelli, F., Setzer, A., de Jesus, S.C., Garcia Fonseca, L.M. and Korting, T.S. (2015). Spectral indices and multi-temporal change image detection algorithms for burned area extraction in the Brazilian Cerrado. In Proceedings of the Anais XVII Simposio Brasileiro de Sensoriamento Remoto—SBSR, Joao Pessoa-PB, Brasil, 25–29 April 2015, pp. 643–650. [29] Mohammadian, A., Asadi borujeni, E., Ebrahimi, A.A., Tahmasebi, P. and Naghipour, A.A. (2020). Effect of intraction fire period and intensity grazing on plant species diversity in the semi-steppe rangeland of chaharmahal and bakhtiari province, Iranian Journal of Range and Desert Research, 27(1), 84-97. [30] Mitri G. and Gitas, I. (2004). A performance evaluation of a burned area object-based classification model when applied to topographically and non-topographically corrected TM imagery. International Journal of Remote Sensing, 25, 2863-2870. [31] Morrison, I.M. (1980). Changes in the ligninand hemicellulose concentrations of ten varieties of temperate grasses with increasing maturity. Grass Forage Science, 35, 93-287. [32] Mouillot, F., Schultz, M. G., Yue, C., Cadule, P., Tansey, K., Ciais, P. and Chuvieco, E. (2014). Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. International Journal of Applied Earth Observation and Geoinformation, 26, 64-79. [33] Rahmani, SH., Ebrahimi, A. and Davoudian, A.R. (2013). Generating a Vegetation Map in Mountainous Region of Sabzkouh Using a Digital Elevation Model. Journal of Rangeland and Watershed Management, 69(3): 621-631. [34] Rahman, A.F. and Gamon, J.A. (2004). Detecting biophysical properties of a semiarid grassland and distinguishing burned from unburned areas with hyperspectral reflectance. Journal of Arid Environments, 58, 597–610. [35] Roy, D.P., Giglio, L., Kendall, J.D. and Justice, C.O. (1999). Multi-temporal activefire based burn scar detection algorithm. International Journal of Remote Sensing, 20, 1031–1038. [36] Sharifi, J. and Akbarzadeh, M. (2010). Investigation of vegetation changes under precipitation in semi-steppic rangelands of Ardebil province (Case study: Arshagh Rangeland Research Site). Journal of Range and Watershed Management (Iranian Journal of Natural Resources), 65(4): 507-516. [37] Smith, A.M.S., Drake, N.A., Wooster, M.J., Hudak, A.T., Holden, Z.A. and Gibbons, C.J. (2007). Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: Comparison of methods and application to MODIS. International Journal of Remote Sensing, 28, 2753–2775. [38] Taddeoa, S., Dronovaa, I. and Depsky, N. (2019). Spectral vegetation indices of wetland greenness: Responses to vegetation structure, composition, and spatial distribution. Remote Sensing of Environment, 234: 1-13. [39] Trager, M., Wilson, G.W.T. and Hartnett, D.C. (2004). Concurrent effects of fire regime, grazing and bison wallowing on tallgrass prairie vegetation. American Midland Naturalist, 152, 237–247. [40] Trigg, S. and Flasse, S. (2001). An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. International Journal of Remote Sensing, 22, 2641–2647. [41] Tucker, C. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150. [42] USGS. (2019). Landsat Surface Reflectance-Derived Spectral Indices. https://www.usgs.gov/land-resources/nli/landsat/landsat-normalized-burn-ratio. [43] Veraverbeke, S., Harris, S. and Hook, S. (2011). Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data. Remote Sensing of Environment, 115(10), 2702-2709. [44] Veraverbeke, S., Dennison, P., Gitas, I., Hulley, G., Kalashnikova, O., Katagis, T., Kuai, L., Meng, R., Roberts, D. and Stavros, N. (2018). Hyperspectral remote sensing of fire: state-of-the-art and future perspectives. Remote Sensing of Environment, 216, 105-121. [45] White, J.D., Ryan, K.C., Key, C.C. and Running, S.W. (1996). Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire, 6, 125–136. [46] Wilson, E.H. and Sader, S.A. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80, 385–396. | ||
آمار تعداد مشاهده مقاله: 337 تعداد دریافت فایل اصل مقاله: 228 |