- Amini-Nouri, F. & Ziarati, P. (2015). Chemical composition of native hazelnut (Corylus avellana) varieties in Iran, association with ecological conditions. Bioscience & Biotechnology Research Asia, 12 (3), 2053-60.
- Andeden, E. E., S Baloch, F., Derya, M., Kilian, B., & Özkan. H. (2013). iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species, Journal of Plant Biochemistry and Biotechnology, 22 (4), 453-66.
- Balik, H., I. (2021). Bioactive Compounds and Fatty Acid Composition of New Turkish Hazelnut Cultivars, International Journal of Fruit Science, 21 (1), 106-114.
- Campa, A., Trabanco, N., Pérez‐Vega, E., Rovira, M., & Ferreira, J. J. (2011). Genetic relationship between cultivated and wild hazelnuts (Corylus avellana) collected in northern Spain, Plant Breeding, 130 (3), 360-66.
- Crews, C., Hough, P., Godward, J., Brereton, P., Lees, M., Guiet, S., & Winkelmann, W. (2005). Study of the main constituents of some authentic hazelnut oils, Journal of Agricultural and Food Chemistry, 53 (12), 4843-52.
- Enescu, CM, Durrant, T.H., Rigo, D., & Caudullo, G. (2016). Corylus avellana in Europe: distribution, habitat, usage and threats, European Atlas of Forest Tree Species, 54, 86-87.
- Erdogan, V., Koksal, Ilhami, A., & Aygun, A. (2010). Assessment of genetic relationships among Turkish hazelnut (Corylus avellana) cultivars by RAPD markers, Romanian Biotechnological Letters, 15 (5): 591-601.
- Felbinger, C., Kutzsche, F., Mönkediek, S., & Fischer, M. (2020). Genetic profiling: Differentiation and identification of hazelnut cultivars (Corylus avellana) using RAPD-PCR, Food Control, 107, 106791.
- Ferreira, J.J., Garcia‐González, C., Tous, J., & Rovira, M. (2010). Genetic diversity revealed by morphological traits and ISSR markers in hazelnut germplasm from northern Spain, Plant Breeding, 129, 435-441.
- Feschotte, C., & Pritham, E. J. (2007). DNA transposons and the evolution of eukaryotic genomes, Annual Review of Genetics, 41: 331-368.
- Ghonaim, M., Kalendar, R., Barakat, H., Elsherif, N., Ashry, N., & Schulman, A.H. (2020). High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis, Molecular Biology Reports, 47, 1589-1603.
- Henareh, M., Abdollahi Mandoulakani, B., & Dursun, A. (2018). Association analysis of morphological traits in tomato using ISSR markers, Iranian Journal of Horticultural Science, 49 (1), 171-181. (in Farsi)
- Houshyarfard, M. (2020). Survey on Etiology and Distribution of Dieback/Decline of Hazelnuts (Corylus avellana) in Northern Iran, Journal of Nuts, 11 (3), 245-256.
- Kalendar, R. (2011). The use of retrotransposon-based molecular markers to analyze genetic diversity, Ratarstvo I Povrtarstvo, 48(2), 261-274.
- Katarzyna, K., & Gantner, M. (2020). Morphological Traits and Chemical Composition of Hazelnut from Different Geographical, Agriculture, 10 (9), 375.
- Martins, S., Silva, A.P., Santos, A.A., & Carnide, V. (2009). Diversity in hazelnut using RAPD and ISSR markers. In VII International Congress on Hazelnut, 845, 145-150.
- Martins, S., Simões, F., Matos, J., Paula Silva, A., & Carnide, V. (2014). Genetic relationship among wild, landraces and cultivars of hazelnut (Corylus avellana) from Portugal revealed through ISSR and AFLP markers, Plant Systematics and Evolution, 300, 1035-1046.
- Mehle, N., Nejc, J., Miro, M., Miklavc, J., Matko, B., Rot, M., Ferlež Rus, A., Brus, R., & Dermastia, M. (2019). Phytoplasmas associated with declining of hazelnut (Corylus avellana) in Slovenia, European Journal of Plant Pathology, 155, 1117-1132.
- Mehlenbacher, S. A. (1997). Revised dominance hierarchy for S-alleles in Corylus avellanaTheoretical and Applied Genetics, 94, 360-366.
- Mohammadzedeh, M., Fattahi, R., Zamani, Z., & Khadivi-Khub, A. (2014). Genetic identity and relationships of hazelnut (Corylus avellana) landraces as revealed by morphological characteristics and molecular markers, Scientia Horticulturae, 167, 17-26.
- Mohsenzadeh Golfazani, M., Mohammad, F., Hasani Kumleh S.H. & Samizadeh Lahiji H. (2016). Grouping of some canola genotypes in various drought stress treatment in Germination Stages based on multivariate statistical methods. Iranian Journal of Seed Sciences and Research, 3 (2), 53-65. (in Farsi).
- Mohsenzadeh Golfazani, M., Samizade lahiji, H., Alami, A., Shoayi Deylami, M. & Talesh Sasani S. (2012). Study of Genetic Diversity of Flue-Cured Tobacco (Nicotiana Tabacum) Genotypes using ISSR and Retrotransposon Markers. Iranian Journal of Field Crop Science, 43 (2), 371-380. (in Farsi).
- Murray, M.G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA, Nucleic Acids Research, 8 (19), 4321-4326.
- Nei, M. (1972). Genetic distance between populations, The American Naturalist, 106, 283-92.
- Nezamivand Chegini, M., Samizadeh Lahiji, H., Ramezani Malakroodi, M., & Mohsenzadeh Golfazani, M. (2016). Assessment of genetic diversity among four olive cultivars using morphological markers, Journal of Applied Crop Breeding, 3 (2), 201-214. (in Farsi)
- Ozdemir, F. & Akinci, I. (2004). Physical and nutritional properties of four major commercial Turkish hazelnut varieties. Journal of Food Enginering, 63 (3), 341-347.
- Öztürk, S. C., İrfan Balık, H., Kayalak Balık, S., Kızılcı, G., Duyar, O., Doğanlar, S., & Frary, A. (2017). Molecular genetic diversity of the Turkish national hazelnut collection and selection of a core set, Tree Genetics and Genomes, 13, 113.
- Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis, Molecular Breeding, 2, 225-238.
- Qiang, L.I., Qing-Chang, L., Hong, Z., Dai-Fu, M.A., Xin, W., Xue-Qin, L., & Yu-Ping, W. (2008). Genetic diversity in main parents of sweetpotato in China as revealed by ISSR markers, Acta Agronomica Sinica, 34, 972-977.
- Rajabi, A., Samizadeh Lahiji, H., & Mohsenzadeh Golfazani, M. (2022). Assessment of genetic diversity in Citrus sinensis by ISSR marker and retrotransposon, Journal of Plant Production, 29 (2), 119-139. (in Farsi)
- Razi, M., Amiri, M., Darvishzadeh, R., Doulati Baneh, H., & Martinez Gomez, P. (2019). Evaluation of genetic diversity in local cultivars and genotypes of grape (Vitis vinifera) using ISSR Markers, Iranian Journal of Horticultural Science, 50 (1), 197-207. (in Farsi)
- Reddy, M., Pradeep, N., & Siddiq, E.A. (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding, Euphytica, 128, 9-17.
- Ren, N., & Timko, M. P. (2001). AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species, Genome, 44, 559-571.
- Russell, J.R., Fuller, J.D., Macaulay, M., Hatz, B.G., Jahoor, A., Powell, W., & Waugh, R. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs, Theoretical and Applied Genetics, 95, 714-722.
- Santhosh, W.G., Shobha, D. & Melwyn, G.S. (2009). Assessment of genetic diversity in cashew germplasm using RAPD and ISSR markers, Scientia Horticulturae, 120, 411-17.
- Shannon, C. E. (1948). A mathematical theory of communication, The Bell System Technical Journal, 27, 379-423.
- Silvestri, C., Bacchetta, L., Bellincontro, A., & Cristofori, V. (2021). Advances in cultivar choice, hazelnut orchard management, and nut storage to enhance product quality and safety: an overview, Journal of the Science of Food and Agriculture, 101, 27-43.
- Sorkheh, K., Amirbakhtiar, N., & Ercisli, S. (2016). Potential Start Codon Targeted (SCoT) and Inter-retrotransposon Amplified Polymorphism (IRAP) Markers for Evaluation of Genetic Diversity and Conservation of Wild Pistacia Species Population, Biochemical Genetics, 54, 368-387.
- Vahdani Kia, F. S., Samiezadeh lahiji, H., Zahravi, M. & Mohsenzadeh Golfazani, M. (2021). Evaluating genetic diversity of some wheat genotypes using SSR and ISSR molecular markers. Cereal Research, 11 (1), 43-54. (in Farsi)
- Vuorinen, A. L., Kalendar, R., Fahima, T., Korpelainen, H., Nevo, E., & Schulman, A. H. (2018). Retrotransposon-based genetic diversity assessment in wild emmer wheat (Triticum turgidum dicoccoides), Agronomy, 8, 107.
|