تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,021 |
تعداد مشاهده مقاله | 125,498,110 |
تعداد دریافت فایل اصل مقاله | 98,759,966 |
مکانیابی جایگاههای اسکان موقت پس از زلزله با استفاده از رگرسیون وزندار جغرافیایی توسعهیافته (منطقة 22 شهر تهران) | ||
مجله علمی " آمایش سرزمین " | ||
دوره 15، شماره 2، مهر 1402، صفحه 419-434 اصل مقاله (1.71 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jtcp.2022.345226.670331 | ||
نویسندگان | ||
پرهام پهلوانی* 1؛ علی ربانی1؛ بهناز بیگدلی2؛ سید احمد اسلامی نژاد1 | ||
1گروه سیستم اطلاعات مکانی، دانشکده مهندسی نقشهبرداری و اطلاعات مکانی، دانشکدگان فنی، دانشگاه تهران، تهران، ایران | ||
2دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
چکیده | ||
پژوهش حاضر با هدف مکانیابی مراکز اسکان موقت پس از بحران زلزله به منظور تأمین نیازمندیهای حادثهدیدگان انجام شد. در این تحقیق سعی شد جایگاههای اسکان موقت در منطقة 22 شهر تهران به کمک معیارهای مؤثر شناسایی شوند. دادههای مورد نیاز از طریق سازمان پیشگیری و مدیریت بحران شهر تهران و نتایج سرشماری عمومی نفوس و مسکن سال 1397 به دست آمد. نوآوری تحقیق حاضر ارائة یک رویکرد ترکیبی جدید جهت تعیین معیارهای مؤثر برای مکانیابی جایگاههای اسکان موقت است. در این زمینه از ترکیب رگرسیون وزندار جغرافیایی (هستههای گوسین و مکعبی سهگانه) و الگوریتم بهینهسازی ازدحام ذرات گسسته استفاده شد. روش ترکیبی پیشنهادی مناسب برای مسائل رگرسیون مکانی است. زیرا این روش با دو خواص منحصربهفرد دادههای مکانی، یعنی خودهمبستگی مکانی و ناایستایی مکانی، سازگار است. بهترین مقدار تابع برازش (1-R2) برای هستههای گوسین و مکعبی سهگانه به ترتیب 04616/0 و 0097/0 به دست آمد که نشاندهندة سازگاری بالای هستة مکعبی سهگانه با معیارهای مؤثر است. بر اساس نقشههای حاصلشده، پارک چیتگر و مجموعة ورزشی آزادی وسیعترین و مناسبترین پهنهها برای احداث جایگاههای اسکان موقت پس از بروز بحران زلزله در منطقة مورد مطالعه هستند. با شناسایی جایگاههای اسکان موقت، سازمانهای مربوطه میتوانند زیرساختهای اولیه و مناسب را برای این مراکز منتخب فراهم کنند تا در صورت وقوع زلزله نیاز به صرف وقت برای تأمین این خدمات نباشد. | ||
کلیدواژهها | ||
اسکان موقت؛ الگوریتم بهینهسازی ازدحام ذرات گسسته؛ رگرسیون وزندار جغرافیایی؛ زلزله | ||
عنوان مقاله [English] | ||
Locating temporary shelter sites after the earthquake using developed geographically weighted regression (District 22 of Tehran city) | ||
نویسندگان [English] | ||
Parham Pahlavani1؛ Ali Rabani1؛ Behnaz Bigdeli2؛ Seyed Ahmad Eslaminezhad1 | ||
1Department of GIS, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran | ||
2Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran | ||
چکیده [English] | ||
The purpose of this research is to select temporary accommodation centers after the earthquake crisis to meet the needs of the victims. Therefore, this research has tried to identify temporary accommodation sites in District 22 of Tehran with the help of effective criteria. The required data has been obtained from the Tehran Disaster Mitigation and Management Organization and the results of the general population and housing census of 2017. The novelty of this research is to present a new combination approach to determine the effective criteria for locating temporary shelter sites. In this regard, the combination of geographically weighted regression (Gaussian and tri-cube kernels) with a binary particle swarm optimization algorithm was used. The recommended combination method is suitable for spatial regression problems because it is compatible with two unique properties of spatial data, i.e. spatial autocorrelation and spatial non-stationarity. The best value of the fitness function (1-R2) for Gaussian and tri-cube kernels was obtained at 0.04616 and 0.0097, respectively, which indicates the high compatibility of the tri-cube kernel with effective criteria. According to the obtained maps, Chitgar Park and Azadi Sports Complex are some of the widest and most suitable areas for the construction of temporary shelter sites after the earthquake crisis in the case study. By identifying temporary shelters, relevant organizations can provide the appropriate infrastructure for these selected centers so that there is no need to spend time to provide these services in the event of an earthquake. | ||
کلیدواژهها [English] | ||
Earthquake, Temporary shelter, geographically weighted regression, Binary particle swarm optimization algorithm | ||
مراجع | ||
ارکانی، احسان؛ حاتمینژاد، حسین و قره، سهیل (1399). شناسایی و اولویتبندی عوامل مؤثر بر افزایش ریسک زلزله در بافتهای فرسودة شهری با رویکرد ترکیبی تکنیک دلفی فازی و مدل BMW. تحقیقات کاربردی علوم جغرافیایی، دورة 20، شمارة 59، ۲۹۱ ـ ۳۰۶.
اسماعیلی، سهیلا (1396). مکانیابی اسکان موقت پس از زلزلة احتمالی تهران در فضاهای سبز شهری منطقة ۲۲ شهرداری تهران. دانش پیشگیری و مدیریت بحران، دورة 7، شمارة 3، ۲۷۳ ـ ۲۸۳.
امانپور، سعید و پرویزیان، علیرضا (1399). مکانیابی پناهگاههای چندمنظورۀ شهری مبتنی بر اصول پدافند غیر عامل (مطالعۀ موردی: منطقۀ 1 کلانشهر اهواز). آمایش سرزمین، دورة 12، شمارة 2، 385 ـ 406.
بازدار، سجاد؛ زندمقدم، محمدرضا و کامیابی، سعید (1399). سنجش و ارزیابی کمّی آسیبپذیری شهری در برابر زلزله (نمونه: مورد استان ایلام). تحقیقات کاربردی علوم جغرافیایی، دورة 20، شمارة 59، ۱۹۷ ـ ۲۱۲.
جمالآبادی، جواد؛ سلمانیمقدم، محمد؛ شکاریبادی، علی و نوده، مرضیه (1398). مکانیابی مراکز اسکان موقت جمعیت پس از زلزله در سکونتگاههای شهری (مطالعة موردی: شهر سبزوار). تحقیقات کاربردی علوم جغرافیایی، دورة 19، شمارة 55، ۱۵۳ ـ ۱۷۱.
رشیدی، ابراهیمحصاری؛ اصغر، عطار؛ محمدامین، گیوهچی و سعید، نصبی (1392). مکانیابی اسکان موقت پس از زلزله با استفاده از GIS و تکنیک AHP (مطالعة موردی: منطقة 6 شهر شیراز). مطالعات و پژوهشهای شهری و منطقهای (توقف انتشار)، دورة 5، شمارة 17، 101 ـ 118.
زنگیآبادی، علی؛ نسترن، مهین و مؤمنی، زیبا (1395). تحلیل جغرافیایی و مکانیابی مراکز اسکان موقت شهری در بحرانهای محیطی با استفاده از GIS (مطالعة موردی: منطقة 6 شهر اصفهان). جغرافیا و برنامهریزی، دورة 20، شمارة 56، 149 ـ 169.
سلطانی، زینب و المدرسی، سید علی (1396). تعیین مکان مناطق اسکان موقت و سایتهای امدادرسانی پس از زلزله در بافت تاریخی شهر یزد با استفاده از AHP،FUZZY LOGIC ، FAHP، و GIS. جغرافیا و آمایش شهریـ منطقهای، دورة 7 ، شمارة 22 ، 1 ـ 20.
کریمپور، سارا و مؤمنی، مهدی (1396). مکانیابی اسکان موقت پس از زلزله (مطالعة موردی: شهر اصفهان). جغرافیا و مطالعات محیطی، دورة 20، شمارة 5، 125 ـ 138.
مقیمی، ساجده و منصفی پراپری، دانیال (1398). مکانیابی فضای مناسب برای اسکان موقت زلزلهزدگان با استفاده از تحلیل سلسله مراتبی و ترکیب خطی وزنی بر مبنای GIS (نمونة موردی: شهر شاهرود). تحلیل فضایی مخاطرات محیطی، دورة 6، شمارة 1، 71 ـ 94.
Aad, G., Abbott, B., Abdallah, J., Khalek, S. A., Aben, R., Abi, B., & Abreu, R. (2014). Measurements of spin correlation in top-antitop quark events from proton-proton collisions at s= 7 TeV using the ATLAS detector. Physical Review D, 90(11), 112016.
Abed, K.A. & Ahmad, A. A. (2020). The best parameters selection using pso algorithm to solving for ito system by new iterative technique. Indonesian Journal of Electrical Engineering and Computer Science, 18(3), 1638-1645.
Amanpour, S. & Parvizian, A. (2020). Locating Multi-Purpose Urban Shelters Based on the Principles of Passive Defense: The Case Study of the District One of Ahvaz Metropolis. Town and Country Planning, 12(2), 385-406. (in Persian)
Arkani, E., Hatami Nejad, H., & Qare, S. (2021). Identifying and prioritizing the factors affecting the increase of earthquake risk in worn-out urban areas with a combined approach of fuzzy Delphi technique and BMW model. Applied researches in Geographical Sciences, 20 (59), 291-306. (in Persian)
Bazdar, S., zandmoghadam, M., & Kamyabi, S. (2021). Assessment and evaluation of urban vulnerability to earthquake in the province of Ilam. Applied researches in Geographical Sciences, 20 (59), 197-212. (in Persian)
Chen, W., Zhai, G., Fan, C., Jin, W., & Xie, Y. (2017). A planning framework based on system theory and GIS for urban emergency shelter system: A case of Guangzhou, China. Human and Ecological Risk Assessment: An International Journal, 23(3), 441-456.
Dabiri, M., Oghabi, M., Sarvari, H., Sabeti, S., & Kashefi, H. R. (2020). A combination risk-based approach to post-earthquake temporary accommodation site selection: A case study in Iran. Iranian Journal of Fuzzy Systems, 17(6), 54-74.
Esmaeili, S. (2017). Site selection of temporary settlement after probable Earthquake of Tehran among urban green spaces of Tehran Municipality, District 22. Disaster Prev. Manag. Know, 7 (3), 273-283. (in Persian)
Fotheringham, A. S. & Oshan, T. M. (2016). Geographically weighted regression and multicollinearity: dispelling the myth. Journal of Geographical Systems, 18 (4), 303-329.
Hong, I. & Yoo, C. (2020). Analyzing Spatial Variance of Airbnb Pricing Determinants Using Multiscale GWR Approach. Sustainability, 12 (11), 4710.
Hosseini, S. A., de la Fuente, A., & Pons, O. (2016). Multicriteria decision-making method for sustainable site location of post-disaster temporary housing in urban areas. Journal of Construction Engineering and Management, 142(9), 04016036.
Junian, J. & Azizifar, V. (2018). The evaluation of temporary shelter areas locations using geographic information system and analytic hierarchy process. Civil Engineering Journal, 4(7), 1678-1688.
Karimpoor, S. & Momeni, M. (2017). The Selection of Site for Temporary Sheltering After the earthquake (Case Study of Isfahan). Journal of Geography and Environmental Studies, 5(20), 125-138. (in Persian)
Kennedy, J. & Eberhart, R.C. (1997). Discrete binary version of the particle swarm algorithm. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. 12-15 October 1997, Orlando, FL, USA.
Kilci, F., Kara, B. Y., & Bozkaya, B. (2015). Locating temporary shelter areas after an earthquake: A case for Turkey. European Journal of Operational Research, 243(1), 323-332.
Li, H., Zhao, L., Huang, R., & Hu, Q. (2017). Hierarchical earthquake shelter planning in urban areas: A case for Shanghai in China. International journal of disaster risk reduction, 22, 431-446.
Moghimi, S. & Monsefi Parapari, D. (2019). Site selection for Temporary Earthquake Shelter Compounds, Using Analytic Hierarchy Process and Weighted Linear Combination based on GIS; Case Study: Shahrood. Jsaeh, 6 (1), 71-94. (in Persian)
Murakami, D., Tsutsumida, N., Yoshida, T., Nakaya, T., & Lu, B. (2020). Scalable GWR: A linear-time algorithm for large-scale geographically weighted regression with polynomial kernels. Annals of the American Association of Geographers, 1-22.
Murray, A. T., Xu, J., Baik, J., Burtner, S., Cho, S., Noi, E., & Zhou, E. (2020). Overview of Contributions in Geographical Analysis: Waldo Tobler. Geographical Analysis, 52(4), 480-493.
Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269.
Pu, H., Luo, K., Wang, P., Wang, S., & Kang, S. (2017). Spatial variation of air quality index and urban driving factors linkages: Evidence from Chinese cities. Environmental Science and Pollution Research, 24(5), 4457-4468.
Rashidi, A., Attar, M., Givechi, S., & Nasbi, N. (2013). Site selection of temporary housing after earthquake by GIS and AHP method Case study: Region 6 of Shiraz. Journal of Urban - Regional Studies and Research, 5(17), 101-118. (in Persian)
Soltani, Z. & Almodaresi, D. (2017). Site Selection of Temporary Settlement and Relief Sites After Earthquake in Historical Zone of Yazd by AHP, Fuzzy Logic, FAHP, GIS. Geography and Territorial Spatial Arrangement, 7(22), 1-20. (in Persian)
Tang, C., Liu, X., Cai, Y., Westen, C. V., Yang, Y., Tang, H., & Tang, C. (2020). Monitoring of the reconstruction process in a high mountainous area affected by a major earthquake and subsequent hazards. Natural Hazards and Earth System Sciences, 20(4), 1163-1186.
Wen, H., Zhang, X., Zeng, Q., Lee, J., & Yuan, Q. (2019). Investigating spatial autocorrelation and spillover effects in freeway crash-frequency data. International journal of environmental research and public health, 16(2), 219.
Wu, D. (2020). Spatially and Temporally Varying Relationships between Ecological Footprint and Influencing Factors in China's Provinces Using Geographically Weighted Regression (GWR). Journal of Cleaner Production, 121089.
Ye, X., Yu, X., & Wang, T. (2020). Investigating spatial non-stationary environmental effects on the distribution of giant pandas in the Qinling Mountains, China. Global Ecology and Conservation, 21, e00894.
Zanghiabadi, A., Nastaran, M., & Momeni, Z. (2016). The Geographical Analysis and the Spatial Allocation of Urban Temporary Settlement Centers in Environmental Crisis by Using of GIS (Case Study of Esfahan City). Geography and Planning, 20 (56), 149-169. (in Persian)
Zemestani, A. & Soori, H. (2019). Relationship between fatal road traffic injury rates and Human Development Index in Iran. Journal of Injury and Violence Research, 11(4 Suppl 2).
Zeng, C., Yang, L., Zhu, A. X., Rossiter, D. G., Liu, J., Liu, J., & Wang, D. (2016). Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method. Geoderma, 281, 69-82.
Zhou, Q., Wang, C., & Fang, S. (2019). Application of geographically weighted regression (GWR) in the analysis of the cause of haze pollution in China. Atmospheric Pollution Research, 10(3), 835-846. | ||
آمار تعداد مشاهده مقاله: 831 تعداد دریافت فایل اصل مقاله: 292 |