تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,089,556 |
تعداد دریافت فایل اصل مقاله | 97,192,907 |
An Explicit and Highly Accurate Runge-Kutta Family | ||
Civil Engineering Infrastructures Journal | ||
دوره 56، شماره 1، شهریور 2023، صفحه 51-78 اصل مقاله (2.07 M) | ||
نوع مقاله: Research Papers | ||
شناسه دیجیتال (DOI): 10.22059/ceij.2022.330788.1792 | ||
نویسندگان | ||
Mohammad Rezaiee-Pajand* 1؛ S. AH. Esfehani2؛ H. Ehsanmanesh3 | ||
1Professor, Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
2M.Sc., Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
3B.Sc., Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
چکیده | ||
In this paper, an explicit family with higher-order of accuracy is proposed for dynamic analysis of structural and mechanical systems. By expanding the analytical amplification matrix into Taylor series, the Runge-Kutta family with stages can be presented. The required coefficients ( ) for different stages are calculated through a solution of nonlinear algebraic equations. The contribution of the new family is the equality between its accuracy order, and the number of stages used in a single time step ( ). As a weak point, the stability of the proposed family is conditional, so that the stability domain for each of the first three orders ( 5, 6, and 7) is smaller than that for the classic fourth-order Runge-Kutta method. However, as a positive point, the accuracy of the family boosts as the order of the family increases. As another positive point, any arbitrary order of the family can be easily achieved by solving the nonlinear algebraic equations. The robustness and ability of the authors’ schemes are illustrated over several useful time integration methods, such as Newmark linear acceleration, generalized-𝛼, and explicit and implicit Runge-Kutta methods. Moreover, various numerical experiments are utilized to show higher performances of the explicit family over the other methods in accuracy and computation time. The results demonstrate the capability of the new family in analyzing nonlinear systems with many degrees of freedom. Further to this, the proposed family achieves accurate results in analyzing tall building structures, even if the structures are under realistic loads, such as ground motion loads. | ||
کلیدواژهها | ||
Accuracy؛ Linear and Nonlinear Dynamic Systems؛ Stability؛ Tall Building Structure؛ Taylor Series | ||
مراجع | ||
Bathe, K.J. (1982). Finite Element procedures in engineering analysis, Prentice Hall, United Kingdom.
Bathe, K.J. and Wilson, E.L. (1972). “Stability and accuracy analysis of direct integration methods”, Earthquake Engineering and Structural Dynamics, 1(3), 283-291,
Braś, M., Izzo, G. and Jackiewicz, Z. (2017). “Accurate implicit-explicit general linear methods with inherent Runge-Kutta stability”, Journal of Scientific Computing, 70(3), 1105-1143,
https://doi.org/10.1007/s10915-016-0273-y.
Brogan, W.L. (1991). Modern control theory, Prentice Hall, United Kingdom.
Butcher, J.C. (2016). Numerical methods for ordinary differential equations, Wiley, Germany.
Chang, S.Y. (2013). “An explicit structure-dependent algorithm for pseudodynamic testing”, Engineering structures, 46, 511-525, https://doi.org/10.1016/j.engstruct.2012.08.009.
Chung, J. and Hulbert, G. (1993). “A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method”, Journal of Applied Mechanics, 60(2), 371-375, https://doi.org/10.1115/1.2900803.
Ezoddin, A., Kheyroddin, A. and Gholhaki, M. (2020). “Investigation of the effects of link beam length on the RC frame retrofitted with the linked column frame system”, Civil Engineering Infrastructures Journal, 53(1), 137-159, https://doi.org/10.22059/CEIJ.2019.280596.1580.
Fok, P.W. (2016). “A linearly fourth order multirate Runge-Kutta method with error control”, Journal of Scientific Computing, 66(1), 177-195, https://doi.org/10.1007/s10915-015-0017-4.
Ghassemieh, M. and Badrkhani Ajaei, B. (2018). “Impact of integration on straining modes and shear-locking for plane stress Finite Elements”, Civil Engineering Infrastructures Journal, 51(2), 425-443, https://doi.org/10.7508/CEIJ.2018.02.011.
Goel, M.D., Kumar, M. and Matsagar, V.A. (2018). “Blast mitigation analysis of semi-buried structure”, Civil Engineering Infrastructures Journal, 51(2), 445-460, https://doi.org/10.7508/CEIJ.2018.02.012.
Grote, M.J., Mehlin, M. and Mitkova, T. (2015). “Runge-Kutta-based explicit local time-stepping methods for wave propagation”, SIAM Journal on Scientific Computing, 37(2), A747-A775, https://doi.org/10.1137/140958293.
Gu, Y. and Zhu, Y. (2021). “Adams predictor–corrector method for solving uncertain differential equation”, Computational and Applied Mathematics, 40(2), 1-20, https://doi.org/10.1007/s40314-021-01461-2.
Hairer, E., Lubich, C. and Wanner, G. (2006). Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations, Springer Berlin, Heidelberg.
Heun, K. (1900). “Neue Methoden zur approximativen integration der differentialgleichungen einer unabhängigen veränderlichen”, Zeitschrift für Angewandte Mathematik und Physik, 45, 23-38.
Hughes, T.J. (2012). The Finite Element method: Linear static and dynamic Finite Element analysis, Dover Publications, United States.
Hulbert, G.M. and Chung, J. (1996). “Explicit time integration algorithms for structural dynamics with optimal numerical dissipation”, Computer Methods in Applied Mechanics and Engineering, 137(2), 175-188, https://doi.org/10.1016/S0045-7825(96)01036-5.
Hulbert, G.M. and Hughes, T.J.R. (1987). “An error analysis of truncated starting conditions in step‐by‐step time integration: Consequences for structural dynamics”, Earthquake Engineering and Structural Dynamics, 15(7), 901-910, https://doi.org/10.1002/eqe.4290150710.
Isherwood, L., Grant, Z.J. and Gottlieb, S. (2018). “Strong stability preserving integrating factor Runge-Kutta methods”, SIAM Journal on Numerical Analysis, 56(6), 3276-3307, https://doi.org/10.1137/17M1143290.
Izzo, G. and Jackiewicz, Z. (2017). “Highly stable implicit–explicit Runge-Kutta methods”, Applied Numerical Mathematics, 113(March), 71-92, https://doi.org/10.1016/j.apnum.2016.10.018.
Jørgensen, J.B., Kristensen, M.R. and Thomsen, P.G. (2018). “A family of ESDIRK integration methods”, arXiv preprint arXiv:1803.01613, https://doi.org/10.48550/arXiv.1803.01613. Kassam, A.K. and Trefethen, L.N. (2005). “Fourth-order time-stepping for stiff PDEs”, SIAM Journal on Scientific Computing, 26(4), 1214-1233, https://doi.org/10.1137/S1064827502410633.
Kim, W. (2019). “A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics”, Engineering Structures, 195(15 September), 358-372, https://doi.org/10.1016/j.engstruct.2019.05.095.
Kordi, A. and Mahmoudi, M. (2022). “Damage detection in truss bridges under moving load using time history response and members influence line curves”, Civil Engineering Infrastructures Journal, 55(1), 183-194, https://doi.org/10.22059/CEIJ.2021.314109.1723.
Kutta, W. (1901). “Beitrag zur näherungweisen Integration totaler Differentialgleichungen”, Zeitschrift für Angewandte Mathematik und Physik, 46, 435-453.
Martín-Vaquero, J. and Kleefeld, A. (2019). “ESERK5: A fifth-order extrapolated stabilized explicit Runge-Kutta method”, Journal of Computational and Applied Mathematics, 356(15 August), 22-36, https://doi.org/10.1016/j.cam.2019.01.040.
Lee, T.Y., Chung, K.J. and Chang, H. (2017). “A new implicit dynamic finite element analysis procedure with damping included”, Engineering Structures, 147(15 September), 530-544, https://doi.org/10.1016/j.engstruct.2017.06.006.
Moler, C. and Van Loan, C. (2003). “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later”, SIAM Review, 45(1), 3-49, https://doi.org/10.1137/S00361445024180.
Haj Najafi, L. and Tehranizadeh, M. (2016). “Distribution of building nonstructural components in height subjected to cost of damage for low-rise office buildings”, Civil Engineering Infrastructures Journal, 49(2), 173-196, https://doi.org/10.7508/ceij.2016.02.001.
Newmark, N.M. (1959). “A method of computation for structural dynamics”, Journal of the Engineering Mechanics Division, 85(3), 67-94, https://doi.org/10.1061/JMCEA3.0000098.
Noels, L., Stainier, L. and Ponthot, J.P. (2006). “Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics”, Computer Methods in Applied Mechanics and Engineering, 195(19-22), 2169-2192, https://doi.org/10.1016/j.cma.2005.03.003.
Ortigosa, R., Gil, A.J., Martínez-Frutos, J., Franke, M. and Bonet, J. (2020). “A new energy–momentum time integration scheme for non-linear thermo-mechanics”, Computer Methods in Applied Mechanics and Engineering, 372(1 December), 113395, https://doi.org/10.1016/j.cma.2020.113395.
Paz, M. and Kim, Y.H. (2018). Structural Dynamics: Theory and Computation, Springer International Publishing, Germany.
Rezaie, F., Fakhradini, S.M. and Ghahremannejad, M. (2018). “Numerical evaluation of progressive collapse potential in reinforced concrete buildings with various floor plans due to single column removal”, Civil Engineering Infrastructures Journal, 51(2), 405-424, https://doi.org/10.7508/ceij.2018.02.010.
Rezaiee-Pajand, M., Esfehani, S.A.H. and Karimi-Rad, M. (2018). “Highly accurate family of time integration method”, Structural Engineering and Mechanics, 67(6), 603-616, https://doi.org/10.12989/sem.2018.67.6.603.
Rezaiee-Pajand, M., Esfehani, S.A.H. and Ehsanmanesh, H. (2021). “An efficient weighted residual time integration family”, International Journal of Structural Stability and Dynamics, 21(08), 2150106, https://doi.org/10.1142/S0219455421501066.
Rezaiee-Pajand, M. and Karimi-Rad, M. (2017). “An accurate predictor-corrector time integration method for structural dynamics”, International Journal of Steel Structures, 17(3), 1033-1047, https://doi.org/10.1007/s13296-017-9014-9.
Rossi, D.F., Ferreira, W.G., Mansur, W.J. and Calenzani, A.F.G. (2014). “A review of automatic time-stepping strategies on numerical time integration for structural dynamics analysis”, Engineering Structures, 80, 118-136, https://doi.org/10.1016/j.engstruct.2014.08.016.
Shutov, A.V., Landgraf, R. and Ihlemann, J. (2013). “An explicit solution for implicit time stepping in multiplicative finite strain viscoelasticity”, Computer Methods in Applied Mechanics and Engineering, 265(1 October), 213-225, https://doi.org/10.1016/j.cma.2013.07.004.
Soares, D. (2016). “A novel family of explicit time marching techniques for structural dynamics and wave propagation models”, Computer Methods in Applied Mechanics and Engineering, 311(1 November), 838-855, https://doi.org/10.1016/j.cma.2016.09.021.
Soares, D. and Großeholz, G. (2018). “Nonlinear structural dynamic analysis by a stabilized central difference method”, Engineering Structures, 173, 383-392, https://doi.org/10.1016/j.engstruct.2018.06.115.
Sun, Z. and Shu, C.W. (2019). “Strong stability of explicit Runge-Kutta time discretizations”, SIAM Journal on Numerical Analysis, 57(3), 1158-1182, https://doi.org/10.1137/18M122892X.
Turaci, M.Ö. and Öziş, T. (2018). “On explicit two-derivative two-step Runge-Kutta methods”, Computational and Applied Mathematics, 37(5), 6920-6954, https://doi.org/10.1137/18M122892X.
Turyn, L. (2013). Advanced engineering mathematics, CRC Press, United States.
Vejju, P., George, A. and Rahulkar, A.D. (2016). “Comparative study on the computation of state transition matrix using La-grange's interpolation technique and Cayley-Hamilton theorem”, Proceedings of the 10th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 10.1109/ISCO.2016.7726936.
Yaghoubi, V., Abrahamsson, T. and Johnson, E.A. (2016). “An efficient exponential predictor-corrector time integration method for structures with local nonlinearity”, Engineering Structures, 128, 344-361, https://doi.org/10.1016/j.engstruct.2016.09.024.
Zhang, L., Zhang, Q. and Sun, H.W. (2020). “Exponential Runge-Kutta method for two-dimensional nonlinear fractional complex Ginzburg-Landau equations”, Journal of Scientific Computing, 83(3), 1-24, https://doi.org/10.1007/s10915-020-01240-x.
Zhao, S. and Wei, G.W. (2014). “A unified discontinuous Galerkin framework for time integration”, Mathematical Methods in the Applied Sciences, 37(7), 1042-1071, https://doi.org/10.1002/mma.2863. | ||
آمار تعداد مشاهده مقاله: 337 تعداد دریافت فایل اصل مقاله: 774 |