تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,909 |
تعداد دریافت فایل اصل مقاله | 97,221,752 |
Effects of Joule heating and viscous dissipation on Casson nanofluid flow over a stretched sheet with chemical reaction | ||
Journal of Computational Applied Mechanics | ||
مقاله 1، دوره 53، شماره 4، اسفند 2022، صفحه 478-493 اصل مقاله (585.46 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2022.348203.754 | ||
نویسندگان | ||
Madan Mohan Muduly1؛ Pravat Kumar Rath2؛ Pallab Kar3؛ Kharabela Swain* 3 | ||
1Department of Mathematics, OUTR, Bhubaneswar-751003, India | ||
2Department of Mathematics, BRM IIT, Bhubaneswar-751010, India | ||
3Department of Mathematics, Gandhi Institute For Technology, Bhubaneswar-752054, India | ||
چکیده | ||
Nanofluids find numerous applications in thermal engineering and industrial processes due to their effective thermal conductivity property compared to regular fluids. A nanofluid consists of containing nanometer-sized particles, called nanoparticles of metals, oxides, carbides, or carbon nanotubes etc. with water, ethylene glycol, and oil etc. serve as base fluids. The present study takes care of effects of Brownian motion and thermophoresis on unsteady Casson fluid flow, heat and mass transfer over a stretching sheet embedded in a porous medium. Moreover, the flow phenomena are subjected to heat source, thermal radiation, viscous dissipation, Joule heating and are associated with the diffusion of chemically reactive nanoparticles to base fluid. These two thermo mechanical aspects draw a little attention of the researchers as reported in literature. The governing equations of flow model admit similarity solution and are reduce to non-linear ordinary differential equations (ODEs) applying suitable similarity transformation and are solved numerically using Runge-Kutta-Fehlberg method with MATLAB code. The interesting outcomes are recorded as follows: The formation of inverted boundary layer, the consequence of flow reversal, is due to overpowering of shearing effect of the rigid bounding surface over the free stream stretching in the absence of suction. The higher magnetic field intensity as well as unsteady flow parameter leads to increasing skin friction coefficient may lead to flow reversal. Hence, regulating these parameters is a suggesting measure. The low Brownian motion in conjunction with high thermophoresis leads to upsurge of thermal energy (hike in temperature profile) near the bounding surface. The presence of nanoparticles considered in the base fluid, deduces the shearing stress at the plate surface is a desired outcome to avoid flow reversal. | ||
کلیدواژهها | ||
MHD؛ heat and mass transfer؛ Casson fluid؛ thermophoresis؛ Brownian motion؛ chemical reaction | ||
مراجع | ||
[1] L. J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik ZAMP, Vol. 21, No. 4, pp. 645-647, 1970.
[2] T. Mahapatra, A. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet, Heat and Mass transfer, Vol. 38, No. 6, pp. 517-521, 2002.
[3] J. Misra, A. Sinha, Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion, Heat and Mass Transfer, Vol. 49, No. 5, pp. 617-628, 2013.
[4] K. Bhattacharyya, MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation, Journal of thermodynamics, Vol. 2013, 2013.
[5] S. M. Ibrahim, P. V. Kumar, O. D. Makinde, Chemical reaction and radiation effects on non-Newtonian fluid flow over a stretching sheet with non-uniform thickness and heat source, in Proceeding of, Trans Tech Publ, pp. 319-331.
[6] C. K. Kumar, S. Srinivas, Influence of Joule heating and thermal radiation on unsteady hydromagnetic flow of chemically reacting Casson fluid over an inclined porous stretching sheet, Special Topics & Reviews in Porous Media: An International Journal, Vol. 10, No. 4, 2019.
[7] M. Abd El-Aziz, A. A. Afify, MHD Casson fluid flow over a stretching sheet with entropy generation analysis and Hall influence, Entropy, Vol. 21, No. 6, pp. 592, 2019.
[8] M. Das, G. Mahanta, S. Shaw, S. Parida, Unsteady MHD chemically reactive double‐diffusive Casson fluid past a flat plate in porous medium with heat and mass transfer, Heat Transfer—Asian Research, Vol. 48, No. 5, pp. 1761-1777, 2019.
[9] K. Anantha Kumar, V. Sugunamma, N. Sandeep, Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet, Journal of Thermal Analysis and Calorimetry, Vol. 140, No. 5, pp. 2377-2385, 2020.
[10] M. Nayak, G. Mahanta, K. Karmakar, P. Mohanty, S. Shaw, Effects of thermal radiation and stability analysis on MHD stagnation casson fluid flow over the stretching surface with slip velocity, in Proceeding of, AIP Publishing LLC, pp. 020045.
[11] C. K. Kumar, S. Srinivas, A. S. Reddy, MHD pulsating flow of Casson nanofluid in a vertical porous space with thermal radiation and Joule heating, Journal of Mechanics, Vol. 36, No. 4, pp. 535-549, 2020.
[12] B. Gireesha, C. Srinivasa, N. Shashikumar, M. Macha, J. Singh, B. Mahanthesh, Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 233, No. 5, pp. 1173-1184, 2019.
[13] B. Kumar, S. Srinivas, Unsteady hydromagnetic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet with joule heating and thermal radiation, Journal of applied and computational mechanics, Vol. 6, No. 2, pp. 259-270, 2020.
[14] M. A. El-Aziz, A. Afify, Effect of Hall current on MHD slip flow of Casson nanofluid over a stretching sheet with zero nanoparticle mass flux, Thermophysics and Aeromechanics, Vol. 26, No. 3, pp. 429-443, 2019.
[15] S. G. Bejawada, Y. D. Reddy, W. Jamshed, K. S. Nisar, A. N. Alharbi, R. Chouikh, Radiation effect on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a Forchheimer porous medium, Alexandria Engineering Journal, Vol. 61, No. 10, pp. 8207-8220, 2022.
[16] M. Senapati, K. Swain, S. K. Parida, Numerical analysis of three-dimensional MHD flow of Casson nanofluid past an exponentially stretching sheet, Karbala Int. J. Mod. Sci, Vol. 6, No. 1, pp. 93-102, 2020.
[17] M. Senapati, S. K. Parida, K. Swain, S. M. Ibrahim, Analysis of variable magnetic field on chemically dissipative MHD boundary layer flow of Casson fluid over a nonlinearly stretching sheet with slip conditions, International Journal of Ambient Energy, pp. 1-15, 2020.
[18] L. Panigrahi, J. Panda, K. Swain, G. C. Dash, Heat and mass transfer of MHD Casson nanofluid flow through a porous medium past a stretching sheet with Newtonian heating and chemical reaction, Karbala Int J Mod Sci, Vol. 6, No. 3, pp. 11, 2020.
[19] S. Sahu, D. Thatoi, K. Swain, Darcy-Forchheimer Flow Over a Stretching Sheet with Heat Source Effect: A Numerical Study, in: Recent Advances in Mechanical Engineering, Eds., pp. 615-622: Springer, 2023.
[20] M. M. Biswal, K. Swain, G. C. Dash, K. Ojha, Study of radiative magneto-non-Newtonian fluid flow over a nonlinearly elongating sheet with Soret and Dufour effects, Numerical Heat Transfer, Part A: Applications, pp. 1-12, 2022.
[21] K. Swain, S. K. Parida, G. C. Dash, Effects of non-uniform heat source/sink and viscous dissipation on MHD boundary layer flow of Williamson nanofluid through porous medium, in Proceeding of, Trans Tech Publ, pp. 110-127.
[22] M. V. Krishna, Chemical reaction, heat absorption and Newtonian heating on MHD free convective Casson hybrid nanofluids past an infinite oscillating vertical porous plate, International Communications in Heat and Mass Transfer, Vol. 138, pp. 106327, 2022.
[23] M. Azam, T. Xu, M. Nayak, W. A. Khan, M. Khan, Gyrotactic microorganisms and viscous dissipation features on radiative Casson nanoliquid over a moving cylinder with activation energy, Waves in Random and Complex Media, pp. 1-23, 2022.
[24] K. Sakkaravarthi, P. B. A. Reddy, Entropy generation on Casson hybrid nanofluid over a curved stretching sheet with convective boundary condition: Semi-analytical and numerical simulations, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, pp. 09544062221119055, 2022.
[25] S. Rao, P. Deka, A numerical solution using EFDM for unsteady MHD radiative Casson nanofluid flow over a porous stretching sheet with stability analysis, Heat Transfer, Vol. 51, No. 8, pp. 8020-8042, 2022.
[26] M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[27] M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[28] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[29] M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[30] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[31] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[32] A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[33] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[34] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[35] M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[36] M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[37] H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[38] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[39] M. Goodarzi, M. Mohammadi, A. Gharib, Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran, in Proceeding of, https://publications.waset.org/abstracts/33008/techno-economic-analysis-of …, pp.
[40] M. Mohammadi, A. A. Nekounam, M. Amiri, The vibration analysis of the composite natural gas pipelines in the nonlinear thermal and humidity environment, in Proceeding of, https://civilica.com/doc/540946/, pp.
[41] M. Goodarzi, M. Mohammadi, M. Rezaee, Technical Feasibility Analysis of PV Water Pumping System in Khuzestan Province-Iran, in Proceeding of, https://publications.waset.org/abstracts/18930/technical-feasibility …, pp.
[42] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[43] M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014.
[44] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[45] M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[46] A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[47] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1541-1546, 2014.
[48] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[49] S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[50] S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[51] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[52] M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[53] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[54] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[55] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[56] A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[57] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[58] A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[59] A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[60] H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[61] M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version differential quadrature method, Journal of solid mechanics in engineering, Vol. 3, No. 2, pp. 47-56, 2011.
[62] A. Farajpour, M. Mohammadi, M. Ghayour, Shear buckling of rectangular nanoplates embedded in elastic medium based on nonlocal elasticity theory, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_390.html, pp. 390.
[63] M. Mohammadi, A. Farajpour, A. R. Shahidi, Higher order shear deformation theory for the buckling of orthotropic rectangular nanoplates using nonlocal elasticity, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_391.html, pp. 391.
[64] M. Mohammadi, A. Farajpour, A. R. Shahidi, Effects of boundary conditions on the buckling of single-layered graphene sheets based on nonlocal elasticity, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_382.html, pp. 382.
[65] M. Mohammadi, M. Ghayour, A. Farajpour, Using of new version integral differential method to analysis of free vibration orthotropic sector plate based on elastic medium, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_497.html, pp. 497.
[66] N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[67] M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam, Acta Mechanica, https://doi.org/10.1007/s00707-022-03430-0, 2023.
[68] W. Ibrahim, O. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition, Journal of Aerospace Engineering, Vol. 29, No. 2, pp. 04015037, 2016.
[69] W. Ibrahim, O. Makinde, Magnetohydrodynamic stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 230, No. 5, pp. 345-354, 2016.
[70] O. Makinde, W. Khan, Z. Khan, Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 231, No. 4, pp. 695-703, 2017.
[71] P. Narayana, N. Tarakaramu, O. D. Makinde, B. Venkateswarlu, G. Sarojamma, MHD stagnation point flow of viscoelastic nanofluid past a convectively heated stretching surface, in Proceeding of, Trans Tech Publ, pp. 106-120.
[72] M. Malik, O. Makinde, Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface, Journal of King Saud University-Science, Vol. 30, No. 4, pp. 440-449, 2018.
[73] R. Mehmood, M. Nayak, N. S. Akbar, O. Makinde, Effects of thermal-diffusion and diffusion-thermo on oblique stagnation point flow of couple stress Casson fluid over a stretched horizontal Riga plate with higher order chemical reaction, Journal of Nanofluids, Vol. 8, No. 1, pp. 94-102, 2019.
[74] K. Das, P. R. Duari, P. K. Kundu, Nanofluid flow over an unsteady stretching surface in presence of thermal radiation, Alexandria engineering journal, Vol. 53, No. 3, pp. 737-745, 2014.
[75] K. Swain, S. Parida, G. Dash, MHD heat and mass transfer on stretching sheet with variable fluid properties in porous medium, AMSE J Model B, Vol. 86, pp. 706-726, 2017.
[76] H. Schlichting, J. Kestin, 1961, Boundary layer theory, Springer,
[77] M. Reza, A. Gupta, Shear flow over a rotating porous plate subjected to suction or blowing, Physics of Fluids, Vol. 19, No. 7, pp. 073601, 2007. | ||
آمار تعداد مشاهده مقاله: 413 تعداد دریافت فایل اصل مقاله: 826 |