
تعداد نشریات | 162 |
تعداد شمارهها | 6,691 |
تعداد مقالات | 72,186 |
تعداد مشاهده مقاله | 129,074,086 |
تعداد دریافت فایل اصل مقاله | 101,861,936 |
Determination of genesis by Using geochemical and isotopic studies of iron and oxygen in magnetite ore in Gol-e-Gohar iron ore district, Sanandaj-Sirjan zone, Iran | ||
Geopersia | ||
مقاله 2، دوره 13، شماره 1 - شماره پیاپی 22287825، فروردین 2023، صفحه 15-31 اصل مقاله (3.33 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/geope.2022.332114.648635 | ||
نویسندگان | ||
Narges Alibabaie* 1؛ Dariush Esmaeily1؛ Shojaeddin Nirooamand1؛ Teymoor Mansouri2؛ Bernd Lehmann3 | ||
1School of Geology, College of Sciences, University of Tehran, Tehran, Iran | ||
2Gohar-Zamin mine, 55 km. Shiraz Road, 78185-111 Sirjan, Kerman, Iran | ||
3Mineral Resources, Technical University of Clausthal, Adolph-Roemer-Strasse 2a, 38678 Clausthal- Zellerfeld, Germany | ||
چکیده | ||
The Gol-e-Gohar iron deposit in the Sanandaj-Sirjan zone of south-western Iran comprises six majorore bodies. The largest deposit is Gol-e-Gohar No. 3 (Gohar-Zamin) with about 643 Mt @ 53.1% Fe.Magnetite is formed in massive and brecciated shapes. Gol-e-Gohar magnetite contains Mg, Ca, and Siup to the percent range, V and Ti in the 100s ppm level, and low Cr, Co, Ni in the tens of ppm range,typical of Kiruna mineralization (especially Bafq mining district). But Chador-Malu magnetite is formedat a higher temperature than Gol-e-Gohar magnetite, therefore, hydrothermal high-T nature (magmatic ore-forming fluids), which are related to felsic magmatism (host meta-granites), and both of them are attributed to the Early Paleozoic. The oxygen isotope composition of magnetite is 4.9 ± 0.7‰ δ18 O (n = 9) and the iron isotope composition is 0.49 ± 0.05‰ δ56 Fe (n =17). These data suggest that the magnetite ore formed from a magmatic- hydrothermal (high-T) fluid in equilibrium with a granitic source. The Gol-e-Gohar iron ore district shows several similarities to the Bafq mining district, located about 400 km to the north, and seems to be a disrupted member of theKashmar-Kerman arc. Finally, according to the mentioned evidence and comparison of Gol-e-Gohar iron deposit with global samples, the genesis of mineralization in this deposit is most similar to Kiruna- type (Kiruna-type magnetite ± apatite mineralization). | ||
کلیدواژهها | ||
Gol-e-Gohar No.3 iron deposit Magmatic-hydrothermal؛ magnetite؛ Fe isotopes Oxygen isotopes؛ Kiruna | ||
عنوان مقاله [English] | ||
- | ||
مراجع | ||
Badavi, M., Atapour, H., Mohammadi, M., 2019. Mineralogy, petrography, geochemistry of magnetite ore and sulfide minerals and the possible model of mineralization at Anomaly #3, Gol-e-Gohar, iron mine, Sirjan (Kerman). Petrology 38: 49-79 (in Persian with English Abstract). Bayati-Rad, Y., Mirnejad, H., Ghalamghash, J., 2011. Evaluating the origin of magnetite and sulfide 30 Alibabaie et al. phases from Gol-Gohar iron ore deposit (Sirjan): constraints from O and S isotope data. Geosciences 20: 139-146. Bayati-Rad, Y., Mirnejad, H., Ghalamghash, J., 2013. Distribution and abundance of rare earth elements in magnetite from Gol-Gohar iron ore deposit, Sirjan-Kerman. Sci. Q. J. Geosciences 23 (90): 217- 224. Bilenker, L.D., Simon, A.C., Reich, M., Lundstrom, C.C., Gajos, N., Bindeman, I., Barra, F., Munizaga, R., 2016. Fe-O Stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochimica et Cosmochimica Acta 177: 94-104. Childress, T.M., Simon, A.S., Day, W.C., Lundstrom, C.C., Bindeman, I.N., 2016. Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, Southeast Missouri, USA. Economic Geology 111: 2033-2044. Dare, S.A., Barnes, S.J., Beaudoin, G., Méric, J., Boutroy, E., Potvin-Doucet, C., 2014a. Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita 49: 785-796. Dupuis, C., Beaudoin, G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita 46: 1-17. Evans, B.W. and Frost, B.R., 1975. Chrome-spinel in progressive metamorphism-preliminary analysis. Geochimica et Cosmochimica Acta, 39: 959-972. Heimann, A., Beard, B.L., Johnson, C.M., 2008. The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/ 54Fe ratios in siliceous igneous rocks. Geochimica et Cosmochimica Acta, 72: 4379-4396. Jonsson, E., Troll, V.R., Högdahl, K., Harris, C., Weis, F., Nilsson, K.P., Skelton, A., 2013. Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden. Scientific Reports 3: 16-44. Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Lundstrom, C., Bindeman, I., Munizaga, R., 2015a. Giant Kiruna-type deposits form by efficient floation of magmatic magnetite suspensions. Geology 43: 655-656. Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Lundstrom, C., Bindeman, I., Munizaga, R., 2015b. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochimica Acta, 171: 15-38. Loberg, B.E.H., Horndhal, A.K., 1983. Ferride geochemistary of swedish Precambrian iron ores. Mineralium deposita, 18: 478-504. Mirzaei, A., Ahmadi, A., Mirnejad, H., Gao d, J.F., Nakashima, K. and Boomeri, M., 2018. Two-tiered magmatic-hydrothermal and skarn origin of magnetite from Gol-Gohar iron ore deposit of SE Iran: In-situ LA–ICP-MS analyses. Ore Geology Reviews, 102: 639-653. Mohajjel, M. Fergusson, C.L., 2000. Dextral transpression in Late Cretaceous continental collision Sanandaj-Sirjan zone western Iran. Journal of Structural Geology 22: 1125-1139. Mohajjel, M. Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. Journal of Asian Earth Sciences 21: 397- 412. Mücke, A. and Golestaneh, F., 1982. The genesis of the Gol Gohar iron ore deposit (Iran). Chemie der Erde - Geochemistry, 41(3): 193-212. Nadoll, P. Angerer. T. Mauk, J. L. French, D., Walshe, J., 2014a.The chemistry of hydrothermal magnetite. A review. Ore Geology Reviews, 61: 1-32. Ramezani J., and Tucker, R.D., 2003. The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics: American Journal of Science, 303: 622-665. Safarzade, E., Masoudi, F., Hassanzade, J. and Pourmoafi, S.M., 2016. The presence of Precambrian basement in Gol-e-Gohar of Sirjan (south of Iran). Petrology 26: 153-170. Sheikholeslami, M.R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H., Emami, H., 2008. Tectonometamorphic evolution of the Neyriz metamorphic complex, Quri-Kor-eSefid area (Sanandaj-Sirjan Zone, SW Iran). J. Journal of Asian Earth Sciences, 31: 504–521. Singoyi, B., Danyushevsky, L., Davidson, G.J., Large, R., Zaw, K., 2006. Determination of trace elements in magnetites from hydrothermal deposits using the LA-ICP-MS technique. Abstracts of Oral and Poster Presentations from the SEG, Conference Society of Economic Geologists, Keystone, USA, 367-368. Taylor, H.P. Jr., 1967. Oxygen isotope studies of hydrothermal mineral deposits, in Barnes, H.L., ed., Geopersia 2023, 13(1): 15-31 31 Geochemistry of Hydrothermal Ore Deposits. New York, Holt, Rinehart and Winston, 109-142. Taylor, H.P. Jr., 1968. The oxygen isotope geochemistry of igneous rocks. Contributions Mineralogy and Petrology 19: 1-71. Torab, F. M., 2008. Geochemistry and metallogeny of magnetite-apatite deposits of the Bafq Mining District, Central Iran. Doctoral Thesis, Clausthal University of Technology, 131 p. Torab, F.M., Lehmann, B., 2007. Magnetite-apatite deposits of the Bafq mining district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine 71: 347-363. Weis, F., 2013. Oxygen and iron isotope systematics of the Grängesberg mining district (GMD), Central Sweden. M.S. thesis, Uppsala University, 77 p. Young, G.M., 1976. Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada. Precambrian Research, 3: 137-158. | ||
آمار تعداد مشاهده مقاله: 456 تعداد دریافت فایل اصل مقاله: 807 |