تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,090,021 |
تعداد دریافت فایل اصل مقاله | 97,193,718 |
Comparative Regenerative Effects of Allogeneic Bone Marrow and Patellar Ligament Fat Pad Mesenchymal Stem Cells on Experimental Superficial Digital Flexor Tendonitis in New Zealand Rabbits | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 7، دوره 17، شماره 4، دی 2023، صفحه 353-362 اصل مقاله (1 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.17.4.1005314 | ||
نویسندگان | ||
Omid Azari* 1؛ Reza Nikzad2؛ Alireza Farsinezhad3؛ Shahrzad Azizi4 | ||
1Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
2Department of Veterinary Surgery,Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran. | ||
3Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Science, Kerman, Iran. | ||
4Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran. | ||
چکیده | ||
Background: Cell therapy is applied in tendonitis to speed the healing process of tendon tissue and restore its functional properties. Almost all types of stem cells can differentiate from the recipient cells after transplantation. Objectives: The main goal of this study is to compare the effects of two sources of mesenchymal stem cells on tendon regeneration. Methods: This study randomly divided 32 New Zealand rabbits into 4 groups. The bacterial collagenase was induced at the superficial digital flexor tendon (SDFT) of all rabbits, and the treatment was performed 48 hours after collagenase induction. Group 1 was treated with allogeneic bone marrow mesenchymal stem cells (BMMSCs). Group 2 was treated with adipose-derived stem cells (ADSCs) from the patellar ligament fat pad. Group 3 (sham group) was treated with 0.9% normal saline, and group 4 (control group) was left with no treatment. All rabbits were euthanized 2 and 4 weeks after surgery, and tendon samples were harvested. The histopathology was assessed by hematoxylin-eosin, Masson’s trichrome, and Vangieson’s dye, and tendon structure, fiber arrangement, cell nuclei, tissue inflammation, vascularity (angiogenesis), and density were surveyed. Results: The tendon healing process in the BMMSC and ADSC groups revealed better regeneration than the control and sham groups (P≤0.05). Significant changes (P≤0.05) in some microscopic parameters were seen by comparing the BMMSC and ADSC groups. Conclusion: According to the present study, the injection of mesenchymal stem cells (BMMSCs or ADSCs) showed beneficial results in tendon tissue healing. Furthermore, ADSCs showed better regeneration of the injured tendon tissue than BMMSCs. | ||
کلیدواژهها | ||
Regeneration؛ Stem cell؛ Histopathology؛ Tendonitis؛ Rabbit | ||
عنوان مقاله [English] | ||
مطالعه مقایسهای اثرات ترمیمی سلولهای بنیادی آلوژن با منشأ مغزاستخوان و پد چربی لیگامنت کشکک بر روی تاندونیت تجربی در تاندون خمکننده انگشتی سطحی در خرگوش نیوزلندی | ||
نویسندگان [English] | ||
امید آذری1؛ رضا نیکزاد2؛ علیرضا فارسی نژاد3؛ شهرزاد عزیزی4 | ||
1گروه جراحی و رادیولوژی، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران. | ||
2گروه جراحی دامپزشکی، دانشکده دامپزشکی، دانشگاه شهید باهنر کرمان، کرمان، ایران. | ||
3گروه هماتولوژی و علوم آزمایشگاهی پزشکی، دانشکده پیراپزشکی، دانشگاه علوم پزشکی کرمان، کرمان، ایران. | ||
4گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه شهید باهنر کرمان، کرمان، ایران. | ||
چکیده [English] | ||
زمینه مطالعه: سلولدرمانی در تاندونیت به منظور کوتاه کردن دوره بهبودی بافت تاندون و همچنین بازگشت ویژگیهای عملکردی آن به کار میرود. تقریباً همه سلولهای بنیادی پس از تزریق، پتانسیل گستردهای برای تمایز به سلولهای گیرنده را دارا هستند. هدف: هدف اصلی این مطالعه مقایسه دو منبع سلولهای بنیادی مزانشیمی در بازسازی تاندون است. روش کار: در این مطالعه 32 خرگوش نیوزلندی بهطور تصادفی به 4 گروه تقسیم شدند. کلاژناز باکتریایی به دنبال بیهوشی عمومی در تاندون خمکننده انگشتی سطحی (SDFT)، همه خرگوشها القا شد و سلول درمانی 48 ساعت پس از القای کلاژناز انجام شد. گروه 1 با سلولهای بنیادی مزانشیمی مغز استخوان آلوژنیک (BMMSCs)، گروه 2 با سلولهای بنیادی مشتقشده از پد چربی رباط کشکک خرگوش نیوزیلندی و گروه 3 با نرمال سالین 0/9 درصد تحت درمان قرار گرفت. گروه 4 (گروه کنترل) بدون درمان باقی ماند. همه خرگوشها در پایان هفته دوم و چهارم بهروش انسانی معدوم و نمونههای تاندون جهت ارزیابی هیستوپاتولوژی برداشت شدند. مطالعه هیستوپاتولوژی توسط رنگهای هماتوکسیلین ائوزین، تری کروم ماسون و وانگیسون انجام شد و ساختار تاندون، آرایش فیبر، هسته سلولی، التهاب بافت، عروقزایی و تراکم بررسی شدند. نتایج: روند ترمیم تاندون در گروههای ۱ و ۲ بازسازی بهتری نسبت به گروههای۳ و ۴ نشان داد (0/50≤P). در برخی از پارامترهای میکروسکوپی بین گروه ۱ و ۲ تغییرات معناداری مشاهده شد (0/50≤P). نتیجهگیری نهایی: باتوجهبه مطالعه حاضر، تزریق سلولهای بنیادی مزانشیمی BMMSCsمشتق از بافت استخوان و چربیADSCs ، نتایج مفیدی را در بهبود بافت تاندون نشان داد. علاوهبراین ADSCها بازسازی بهتر بافت تاندون آسیبدیده را نسبت به BMMSCها نشان دادند. | ||
کلیدواژهها [English] | ||
ترمیم, سلولهای بنیادی, هیستوپاتولوژی, تاندونیت, خرگوش | ||
اصل مقاله | ||
1. Introduction
Abat, F., Alfredson, H., Cucchiarini, M., Madry, H., Marmotti, A., & Mouton, C., et al. (2018). Current trends in tendinopathy: Consensus of the ESSKA basic science committee. Part II: Treatment options. Journal of Experimental Orthopaedics, 5(1), 38. [DOI:10.1186/s40634-018-0145-5] [PMID] [PMCID] Berebichez-Fridman, R., Gómez-García, R., Granados-Montiel, J., Berebichez-Fastlicht, E., Olivos-Meza, & A., Granados, J., et al. (2017). The holy grail of orthopedic surgery: Mesenchymal stem cells-their current uses and potential applications. Stem Cells International, 2017, 2638305. [DOI:10.1155/2017/2638305] [PMID] [PMCID] Carvalho, A. M., Badial, P. R., Álvarez, L. E. C., Yamada, A. L. M., Borges, A. S., & Deffune, E., et al. (2013). Equine tendonitis therapy using mesenchymal stem cells and platelet concentrates: A randomized controlled trial. Stem Cell Research & Therapy, 4(4), 1-13. [DOI:10.1186/scrt236] [PMID] [PMCID] Chen, S., Wang, J., Chen, Y., Mo, X., & Fan, C. (2021). Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration. Materials Science and Engineering: C, 119, 111506. [DOI:10.1016/j.msec.2020.111506] [PMID] Chen, T. M., Rozen, W. M., Pan, W. R., Ashton, M. W., Richardson, M. D., & Taylor, G. I. (2009). The arterial anatomy of the Achilles tendon: Anatomical study and clinical implications. Clinical Anatomy, 22(3), 377-385. [DOI:10.1002/ca.20758] [PMID] de Lima Santos, A., da Silva, C. G., de Sá Barreto, L. S., Leite, K. R. M., Tamaoki, M. J. S., & Ferreira, L. M., et al. (2020). A new decellularized tendon scaffold for rotator cuff tears-evaluation in rabbits. BMC Musculoskeletal Disorders, 21(1), 1-12. [DOI:10.1186/s12891-020-03680-w] [PMID] [PMCID] Docheva, D., Müller, S. A., Majewski, M., & Evans, C. H. (2015). Biologics for tendon repair. Advanced Drug Delivery Reviews, 84, 222-239. [DOI:10.1016/j.addr.2014.11.015] [PMID] [PMCID] Eliasson, P., Fahlgren, A., & Aspenberg, P. (2008). Mechanical load and BMP signaling during tendon repair: A role for follistatin?. Clinical Orthopaedics and Related Research, 466(7), 1592-1597. [DOI:10.1007%2Fs11999-008-0253-0] [PMID] [PMCID] Fontanella, C. G., Carniel, E. L., Frigo, A., Macchi, V., Porzionato, A., & Sarasin, G., et al. (2017). Investigation of biomechanical response of Hoffa’s fat pad and comparative characterization. Journal of the Mechanical Behavior of Biomedical Materials, 67, 1-9. [DOI:10.1016/j.jmbbm.2016.11.024] [PMID] Kang, K. K., Lee, E. J., Kim, Y. D., Chung, M. J., Kim, J. Y., & Kim, S. Y., et al. (2017). Vitamin C improves therapeutic effects of adipose-derived stem cell transplantation in mouse tendonitis model. In Vivo, 31(3), 343-348. [DOI:10.21873/invivo.11065] [PMID] [PMCID] Kokubu, S., Inaki, R., Hoshi, K., & Hikita, A. (2020). Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing. Regenerative Therapy, 14, 103-110. [DOI:10.1016/j.reth.2019.12.003] [PMID] [PMCID] Lee, S. Y., Kim, W., Lim, C., & Chung, S. G. (2015). Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: A pilot study. Stem Cells, 33(10), 2995-3005. [DOI:10.1002/stem.2110] [PMID] Lee, S. Y., Kwon, B., Lee, K., Son, Y. H., & Chung, S. G. (2017). Therapeutic mechanisms of human adipose-derived mesenchymal stem cells in a rat tendon injury model. The American Journal of Sports Medicine, 45(6), 1429-1439. [DOI:10.1177/0363546517689874] [PMID] Liu, L., Hindieh, J., Leong, D. J., & Sun, H. B. (2017). Advances of stem cell based-therapeutic approaches for tendon repair. Journal of Orthopaedic Translation, 9, 69-75. [DOI:10.1016/j.jot.2017.03.007] [PMID] [PMCID] Lukomska, B., Stanaszek, L., Zuba-Surma, E., Legosz, P., Sarzynska, S., & Drela, K. (2019). Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells International, 2019, 9628536. [DOI:10.1016%2Fj.jot.2017.03.007] [PMID] [PMCID] Malard PF, Brunel HD, Vianna AR, de Lima EM. (2020). Mesenchymal stem cell treatment for superficial digital flexor tendon injury in equine athletes. Online Journal of Veterinary Research. 24(3):150-158. [Link] Marcucio, R. S., Nauth, A., Giannoudis, P. V., Bahney, C., Piuzzi, N. S., & Muschler, G., et al. (2015). Stem cell therapies in orthopaedic trauma. Journal of Orthopaedic Trauma, 29(Suppl 12), S24. [DOI:10.1097/bot.0000000000000459] [PMID] [PMCID] Mardpour, S., Hamidieh, A. A., Taleahmad, S., Sharifzad, F., Taghikhani, A., & Baharvand, H. (2019). Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. Journal of Cellular Physiology, 234(6), 8249-8258. [DOI:10.1002/jcp.27669] [PMID] Martinello, T., Bronzini, I., Perazzi, A., Testoni, S., De Benedictis, G. M., & Negro, A., et al. (2013). Effects of in vivo applications of peripheral blood-derived mesenchymal stromal cells (PB-MSCs) and platlet-rich plasma (PRP) on experimentally injured deep digital flexor tendons of sheep. Journal of Orthopaedic Research, 31(2), 306-314. [DOI:10.1002/jor.22205] [PMID] Ning, C., Gao, C., Li, P., Fu, L., Chen, W., & Liao, Z., et al. (2022). Dual-phase aligned composite scaffolds loaded with tendon-derived stem cells for achilles tendon repair. Advanced Therapeutics, 2200081. [DOI:10.1002/adtp.202200081] Oryan, A., & Sahvieh, S. (2017). Effectiveness of chitosan scaffold in skin, bone and cartilage healing. International Journal of Biological Macromolecules, 104, 1003-1011. [DOI:10.1016/j.ijbiomac.2017.06.124] [PMID] Oryan, A., Hassanajili, S., Sahvieh, S., & Azarpira, N. (2020). Effectiveness of mesenchymal stem cell-seeded onto the 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on the radius bone defect in rat. Life Sciences, 257, 118038. [DOI:10.1016/j.lfs.2020.118038] [PMID] Oryan, A., & Sahvieh, S. (2021). Effects of bisphosphonates on osteoporosis: Focus on zoledronate. Life Sciences, 264, 118681. [DOI:10.1016/j.lfs.2020.118681] [PMID] Oryan, A., Hassanajili, S., & Sahvieh, S. (2021). Effectiveness of a biodegradable 3D polylactic acid/poly (caprolactone)/hydroxyapatite scaffold loaded by differentiated osteogenic cells in a critical-sized radius bone defect in rat. Journal of Tissue Engineering and Regenerative Medicine, 15(2), 150-162. [DOI:10.1002/term.3158] [PMID] Oryan, A., & Sahvieh, S. (2020). Utilization of different osteogenic cells in cell therapy in bone healing. EC orthopedics, 12. 1-4. [Link] Oryan A., Hassanajili S., Sahvieh S. (2022). Effectiveness of purmorphamine loaded biodegradable 3d polylactic acid/polycaprolactone/hydroxyapatite scaffold in a critical-sized radial bone defect in rat. EC Orthopaedics, 13.6. [Link] Oshita, T., Tobita, M., Tajima, S., & Mizuno, H. (2016). Adipose-derived stem cells improve collagenase-induced tendinopathy in a rat model. The American Journal of Sports Medicine, 44(8), 1983-1989. [DOI:10.1177/0363546516640750] [PMID] Sahvieh, S., Oryan, A., Hassanajili, S., & Kamali, A. (2021). Role of bone 1stem cell-seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat. Cell and Tissue Research, 383(2), 735-750. [DOI:10.1007/s00441-020-03284-9] [PMID] Salavati Pour, M. S., Hoseinpour Kasgari, F., Farsinejad, A., Fatemi, A., Hassanshahi, G., & Mirzaee Khalilabadi, R. (2021). Platelet microparticles accelerate proliferation and growth of mesenchymal stem cells through longevity-related genes. Archives of Iranian Medicine, 24(8), 607–614. [DOI:10.34172/aim.2021.86] [PMID] Stoll, C., John, T., Conrad, C., Lohan, A., Hondke, S., & Ertel, W., et al. (2011). Healing parameters in a rabbit partial tendon defect following tenocyte/biomaterial implantation. Biomaterials, 32(21),4806-4815. [DOI:10.1016/j.biomaterials.2011.03.026] [PMID] Ramires, L. C., Jeyaraman, M., Muthu, S., Shankar A, N., Santos, G. S., & da Fonseca, L. F., et al. (2022). Application of orthobiologics in achilles tendinopathy: A review. Life, 12(3), 399. [DOI:10.3390/life12030399] [PMID] [PMCID] Thankam, F. G., Chandra, I., Diaz, C., Dilisio, M. F., Fleegel, J., & Gross, R. M., et al. (2020). Matrix regeneration proteins in the hypoxia-triggered exosomes of shoulder tenocytes and adipose-derived mesenchymal stem cells. Molecular and Cellular Biochemistry, 465(1), 75-87. [DOI:10.1007/s11010-019-03669-7] [PMID] [PMCID] Viganò, M., Lugano, G., Perucca Orfei, C., Menon, A., Ragni, E., & Colombini, A., et al. (2019). Autologous microfragmented adipose tissue reduces the catabolic and fibrosis response in an in vitro model of tendon cell inflammation. Stem Cells International, 2019. [DOI:10.1155/2019/5620286] [PMID] [PMCID] Von Bahr, L., Batsis, I., Moll, G., Hägg, M., Szakos, A., & Sundberg, B., et al. (2012). Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells, 30(7), 1575-1578. [DOI:10.1002/stem.1118] [PMID] Yu, H., Cheng, J., Shi, W., Ren, B., Zhao, F., & Shi, Y., et al. (2020). Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomaterialia, 106, 328-341. [DOI:10.1016/j.actbio.2020.01.051] [PMID] Zuk, P. A. (2010). The adipose-derived stem cell: Looking back and looking ahead. Molecular Biology of The Cell, 21(11), 1783-1787. [DOI:10.1091/mbc.e09-07-0589] [PMID] [PMCID] | ||
مراجع | ||
Abat, F., Alfredson, H., Cucchiarini, M., Madry, H., Marmotti, A., & Mouton, C., et al. (2018). Current trends in tendinopathy: Consensus of the ESSKA basic science committee. Part II: Treatment options. Journal of Experimental Orthopaedics, 5(1), 38. [DOI:10.1186/s40634-018-0145-5] [PMID] [PMCID]
Berebichez-Fridman, R., Gómez-García, R., Granados-Montiel, J., Berebichez-Fastlicht, E., Olivos-Meza, & A., Granados, J., et al. (2017). The holy grail of orthopedic surgery: Mesenchymal stem cells-their current uses and potential applications. Stem Cells International, 2017, 2638305. [DOI:10.1155/2017/2638305] [PMID] [PMCID]
Carvalho, A. M., Badial, P. R., Álvarez, L. E. C., Yamada, A. L. M., Borges, A. S., & Deffune, E., et al. (2013). Equine tendonitis therapy using mesenchymal stem cells and platelet concentrates: A randomized controlled trial. Stem Cell Research & Therapy, 4(4), 1-13. [DOI:10.1186/scrt236] [PMID] [PMCID]
Chen, S., Wang, J., Chen, Y., Mo, X., & Fan, C. (2021). Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration. Materials Science and Engineering: C, 119, 111506. [DOI:10.1016/j.msec.2020.111506] [PMID]
Chen, T. M., Rozen, W. M., Pan, W. R., Ashton, M. W., Richardson, M. D., & Taylor, G. I. (2009). The arterial anatomy of the Achilles tendon: Anatomical study and clinical implications. Clinical Anatomy, 22(3), 377-385. [DOI:10.1002/ca.20758] [PMID]
de Lima Santos, A., da Silva, C. G., de Sá Barreto, L. S., Leite, K. R. M., Tamaoki, M. J. S., & Ferreira, L. M., et al. (2020). A new decellularized tendon scaffold for rotator cuff tears-evaluation in rabbits. BMC Musculoskeletal Disorders, 21(1), 1-12. [DOI:10.1186/s12891-020-03680-w] [PMID] [PMCID]
Docheva, D., Müller, S. A., Majewski, M., & Evans, C. H. (2015). Biologics for tendon repair. Advanced Drug Delivery Reviews, 84, 222-239. [DOI:10.1016/j.addr.2014.11.015] [PMID] [PMCID]
Eliasson, P., Fahlgren, A., & Aspenberg, P. (2008). Mechanical load and BMP signaling during tendon repair: A role for follistatin?. Clinical Orthopaedics and Related Research, 466(7), 1592-1597. [DOI:10.1007%2Fs11999-008-0253-0] [PMID] [PMCID]
Fontanella, C. G., Carniel, E. L., Frigo, A., Macchi, V., Porzionato, A., & Sarasin, G., et al. (2017). Investigation of biomechanical response of Hoffa’s fat pad and comparative characterization. Journal of the Mechanical Behavior of Biomedical Materials, 67, 1-9. [DOI:10.1016/j.jmbbm.2016.11.024] [PMID]
Kang, K. K., Lee, E. J., Kim, Y. D., Chung, M. J., Kim, J. Y., & Kim, S. Y., et al. (2017). Vitamin C improves therapeutic effects of adipose-derived stem cell transplantation in mouse tendonitis model. In Vivo, 31(3), 343-348. [DOI:10.21873/invivo.11065] [PMID] [PMCID]
Kokubu, S., Inaki, R., Hoshi, K., & Hikita, A. (2020). Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing. Regenerative Therapy, 14, 103-110. [DOI:10.1016/j.reth.2019.12.003] [PMID] [PMCID]
Lee, S. Y., Kim, W., Lim, C., & Chung, S. G. (2015). Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: A pilot study. Stem Cells, 33(10), 2995-3005. [DOI:10.1002/stem.2110] [PMID]
Lee, S. Y., Kwon, B., Lee, K., Son, Y. H., & Chung, S. G. (2017). Therapeutic mechanisms of human adipose-derived mesenchymal stem cells in a rat tendon injury model. The American Journal of Sports Medicine, 45(6), 1429-1439. [DOI:10.1177/0363546517689874] [PMID]
Liu, L., Hindieh, J., Leong, D. J., & Sun, H. B. (2017). Advances of stem cell based-therapeutic approaches for tendon repair. Journal of Orthopaedic Translation, 9, 69-75. [DOI:10.1016/j.jot.2017.03.007] [PMID] [PMCID]
Lukomska, B., Stanaszek, L., Zuba-Surma, E., Legosz, P., Sarzynska, S., & Drela, K. (2019). Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells International, 2019, 9628536. [DOI:10.1016%2Fj.jot.2017.03.007] [PMID] [PMCID]
Malard PF, Brunel HD, Vianna AR, de Lima EM. (2020). Mesenchymal stem cell treatment for superficial digital flexor tendon injury in equine athletes. Online Journal of Veterinary Research. 24(3):150-158. [Link]
Marcucio, R. S., Nauth, A., Giannoudis, P. V., Bahney, C., Piuzzi, N. S., & Muschler, G., et al. (2015). Stem cell therapies in orthopaedic trauma. Journal of Orthopaedic Trauma, 29(Suppl 12), S24. [DOI:10.1097/bot.0000000000000459] [PMID] [PMCID]
Mardpour, S., Hamidieh, A. A., Taleahmad, S., Sharifzad, F., Taghikhani, A., & Baharvand, H. (2019). Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. Journal of Cellular Physiology, 234(6), 8249-8258. [DOI:10.1002/jcp.27669] [PMID]
Martinello, T., Bronzini, I., Perazzi, A., Testoni, S., De Benedictis, G. M., & Negro, A., et al. (2013). Effects of in vivo applications of peripheral blood-derived mesenchymal stromal cells (PB-MSCs) and platlet-rich plasma (PRP) on experimentally injured deep digital flexor tendons of sheep. Journal of Orthopaedic Research, 31(2), 306-314. [DOI:10.1002/jor.22205] [PMID]
Ning, C., Gao, C., Li, P., Fu, L., Chen, W., & Liao, Z., et al. (2022). Dual-phase aligned composite scaffolds loaded with tendon-derived stem cells for achilles tendon repair. Advanced Therapeutics, 2200081. [DOI:10.1002/adtp.202200081]
Oryan, A., & Sahvieh, S. (2017). Effectiveness of chitosan scaffold in skin, bone and cartilage healing. International Journal of Biological Macromolecules, 104, 1003-1011. [DOI:10.1016/j.ijbiomac.2017.06.124] [PMID]
Oryan, A., Hassanajili, S., Sahvieh, S., & Azarpira, N. (2020). Effectiveness of mesenchymal stem cell-seeded onto the 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on the radius bone defect in rat. Life Sciences, 257, 118038. [DOI:10.1016/j.lfs.2020.118038] [PMID]
Oryan, A., & Sahvieh, S. (2021). Effects of bisphosphonates on osteoporosis: Focus on zoledronate. Life Sciences, 264, 118681. [DOI:10.1016/j.lfs.2020.118681] [PMID]
Oryan, A., Hassanajili, S., & Sahvieh, S. (2021). Effectiveness of a biodegradable 3D polylactic acid/poly (caprolactone)/hydroxyapatite scaffold loaded by differentiated osteogenic cells in a critical-sized radius bone defect in rat. Journal of Tissue Engineering and Regenerative Medicine, 15(2), 150-162. [DOI:10.1002/term.3158] [PMID]
Oryan, A., & Sahvieh, S. (2020). Utilization of different osteogenic cells in cell therapy in bone healing. EC orthopedics, 12. 1-4. [Link]
Oryan A., Hassanajili S., Sahvieh S. (2022). Effectiveness of purmorphamine loaded biodegradable 3d polylactic acid/polycaprolactone/hydroxyapatite scaffold in a critical-sized radial bone defect in rat. EC Orthopaedics, 13.6. [Link]
Oshita, T., Tobita, M., Tajima, S., & Mizuno, H. (2016). Adipose-derived stem cells improve collagenase-induced tendinopathy in a rat model. The American Journal of Sports Medicine, 44(8), 1983-1989. [DOI:10.1177/0363546516640750] [PMID]
Sahvieh, S., Oryan, A., Hassanajili, S., & Kamali, A. (2021). Role of bone 1stem cell-seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat. Cell and Tissue Research, 383(2), 735-750. [DOI:10.1007/s00441-020-03284-9] [PMID]
Salavati Pour, M. S., Hoseinpour Kasgari, F., Farsinejad, A., Fatemi, A., Hassanshahi, G., & Mirzaee Khalilabadi, R. (2021). Platelet microparticles accelerate proliferation and growth of mesenchymal stem cells through longevity-related genes. Archives of Iranian Medicine, 24(8), 607–614. [DOI:10.34172/aim.2021.86] [PMID]
Stoll, C., John, T., Conrad, C., Lohan, A., Hondke, S., & Ertel, W., et al. (2011). Healing parameters in a rabbit partial tendon defect following tenocyte/biomaterial implantation. Biomaterials, 32(21),4806-4815. [DOI:10.1016/j.biomaterials.2011.03.026] [PMID]
Ramires, L. C., Jeyaraman, M., Muthu, S., Shankar A, N., Santos, G. S., & da Fonseca, L. F., et al. (2022). Application of orthobiologics in achilles tendinopathy: A review. Life, 12(3), 399. [DOI:10.3390/life12030399] [PMID] [PMCID]
Thankam, F. G., Chandra, I., Diaz, C., Dilisio, M. F., Fleegel, J., & Gross, R. M., et al. (2020). Matrix regeneration proteins in the hypoxia-triggered exosomes of shoulder tenocytes and adipose-derived mesenchymal stem cells. Molecular and Cellular Biochemistry, 465(1), 75-87. [DOI:10.1007/s11010-019-03669-7] [PMID] [PMCID]
Viganò, M., Lugano, G., Perucca Orfei, C., Menon, A., Ragni, E., & Colombini, A., et al. (2019). Autologous microfragmented adipose tissue reduces the catabolic and fibrosis response in an in vitro model of tendon cell inflammation. Stem Cells International, 2019. [DOI:10.1155/2019/5620286] [PMID] [PMCID]
Von Bahr, L., Batsis, I., Moll, G., Hägg, M., Szakos, A., & Sundberg, B., et al. (2012). Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells, 30(7), 1575-1578. [DOI:10.1002/stem.1118] [PMID]
Yu, H., Cheng, J., Shi, W., Ren, B., Zhao, F., & Shi, Y., et al. (2020). Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomaterialia, 106, 328-341. [DOI:10.1016/j.actbio.2020.01.051] [PMID]
Zuk, P. A. (2010). The adipose-derived stem cell: Looking back and looking ahead. Molecular Biology of The Cell, 21(11), 1783-1787. [DOI:10.1091/mbc.e09-07-0589] [PMID] [PMCID] | ||
آمار تعداد مشاهده مقاله: 333 تعداد دریافت فایل اصل مقاله: 699 |