تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,900 |
تعداد دریافت فایل اصل مقاله | 97,231,090 |
برآورد مقدار نیتروژن پوششگیاهی ذرت علوفهای با استفاده از فناوری سنجش از دور چندطیفی هوایی با پهپاد | ||
به زراعی کشاورزی | ||
مقاله 6، دوره 25، شماره 3، شهریور 1402، صفحه 587-602 اصل مقاله (1.28 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2022.341850.2700 | ||
نویسندگان | ||
نیکروز باقری* 1؛ مریم رحیمی جهانگیرلو2؛ مهریار جابری اقدم3 | ||
1نویسنده مسئول، مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی. کرج. ایران. رایانامه: n.bagheri@areeo.ac.ir | ||
2دانشکده فناوری کشاورزی (ابوریحان)، دانشگاه تهران. پاکدشت. ایران. رایانامه: m.rahimi@ut.ac.ir | ||
3گروه زراعت و اکولوژی، دانشگاه آزاد اسلامی واحد ورامین- پیشوا، پیشوا، ایران. رایانامه: mrehyarjaberi@iau.ac.ir | ||
چکیده | ||
هدف: بهمنظور ارائۀ یک روش نوین، غیرمخرب، دقیق و سریع برای برآورد مقدار نیتروژن گیاه ذرت از فناوری سنجش از دور چندطیفی هوایی با پهپاد استفاده شد. روش پژوهش: آزمایشها بهصورت طرح بلوکهای کامل تصادفی در چهار سطح کود نیتروژن (صفر، 50، 100 و 150 درصد مقدار کود بهینه) در شهرستان ورامین در سال زراعی 1397 اجرا شد. نمونهبرداری در دو مرحلۀ کوددهی (هشتبرگی و ظهور گلتاجی) انجام شد. تصویربرداری چندطیفی با پهپاد و نمونهبرداری زمینی، یک هفته پس از هر بار کوددهی انجام شد. پس از پردازش تصاویر، شاخصهای پوششگیاهی شامل NDVI، SR، GI، NRI، MCARI2، MTVI2، TCARI، PSRI و REIP محاسبه شدند و همبستگی آنها با نتایج نمونهبرداری زمینی بهدست آمد. یافته ها: براساس نتایج بهدستآمده از بررسی ضرایب همبستگی (r) و رگرسیون (مدل بهترین زیرمجموعه)، بهترین شاخصها برای برآورد مقدار نیتروژن ذرت علوفهای، شاخص پوششگیاهی تفاضلی نرمالشده (NDVI)، شاخص بازتاب نیتروژن (NIR) و شاخص پوشش گیاهی مثلثی اصلاحشده (MTVI2) در هر دو مرحلۀ رشد هشتبرگی (V8) و ظهور گلتاجی (VT) بودند. در مرحلۀ ظهور گلتاجی، رابطۀ مثبت و معنیداری بین شاخصهای NDVI (001/0P≤، 86/0=R2)، NIR (001/0P≤، 70/0=R2) و MTVI2 (01/0P≤، 46/0=R2) با مقدار نیتروژن ذرت بهدست آمد. نتیجه گیری: براساس یافتههای بهدستآمده، تصویربرداری چندطیفی هوایی با پهپاد دقت قابلقبولی برای برآورد مقدار نیتروژن گیاه ذرت ارائه میدهد. این فناوری میتواند به کشاورزان برای تعیین زمان مناسب کوددهی کمک کند. | ||
کلیدواژهها | ||
پرنده هدایتپذیر از دور؛ تصویربرداری چندطیفی؛ سنجش از دور؛ کشاورزی دقیق؛ کود نیتروژن | ||
عنوان مقاله [English] | ||
Estimating maize canopy nitrogen content using aerial multispectral remote sensing by unmanned aerial vehicle | ||
نویسندگان [English] | ||
Nikrooz Bagheri1؛ Maryam Rahimi Jahangirlou2؛ Mehyar Jaberi Aghdam3 | ||
1Corresponding Author, Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. E-mail: n.bagheri@areeo.ac.ir | ||
2Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Iran. E-mail: m.rahimi@ut.ac.ir | ||
3Department of Agronomy and Agroecology, Islamic Azad University, Varamin-Pishva Branch, Pishva, Iran. E-mail: mahyarjaberi@iau.ac.ir | ||
چکیده [English] | ||
Objective: In order to present a new, non-destructive, accurate, and fast method for estimating the nitrogen content of corn, Unmanned Aerial Vehicle (UAV) multispectral sensing technology was used. Methods: The experiments were performed based on a randomized complete block design in four levels of nitrogen fertilizer (zero, 50, 100, and 150%) in Varamin in 2018. Sampling was carried out in two stages of fertilization (8-leaf Stage and Tasseling Stage). Multispectral aerial imaging and ground sampling was performed one week after each fertilizer application. After processing aerial imagery, vegetation indices were calculated and their correlation with the results of ground sampling was determined. Results: Based on the results obtained from the correlation coefficients (r) and best subsets regression, among the spectral vegetation indices, Normalized Difference Vegetation Index (NDVI), Nitrogen Reflectance Index (NIR), and Modified Triangular Vegetation Index2 (MTVI2) indices in both eight leaf collar (V8) and tasseling (VT) of maize growth stage was identified as the best indicator to estimate the nitrogen content of forage maize. At VT, a positive and significant relationship was obtained between NDVI (R2= 0.86, P≤0.001), NRI (R2= 0.70, P≤0.001) and MTVI2 (R2= 0.46, P≤0.01) indices with maize nitrogen content. Conclusion: It can be concluded that UAV multispectral imaging provides acceptable accuracy in determining the nitrogen content of maize. This technology can help farmers to determine the appropriate time of fertilization. | ||
کلیدواژهها [English] | ||
Multispectral imaging, Nitrogen fertilizer, Precision agriculture, Remote sensing, Unmanned aerial vehicle | ||
مراجع | ||
جابریاقدم، مهریار؛ ممیزی، محمدرضا؛ باقری، نیکروز؛ عزیزی، پیمان و نصری، محمد (1399). تشخیص تنش نیتروژن گیاه ذرت و مخاطرات آن با استفاده از تصویربرداری چندطیفی هوایی به وسیله پهپاد. مدیریت مخاطرات محیطی. 7 (2)، 163-170.
حسینی، سید عارفه؛ مسعودی، حسن؛ سجادیه، سید مجید و آبدانان مهدیزاده، سامان (1398). تعیین مقدار نیتروژن و کلروفیل گیاه نیشکر از روی شاخصهای رنگی تصاویر دیجیتال هوایی با مدلسازی رگرسیونی. مجله علمی کشاورزی مهندس زراعی. 42 (2)، 83-98. References Bagheri, N. (2016). Development of a high-resolution aerial remote sensing system for precision agriculture. International Journal of Remote Sensing, 38(8), 2053-2065. https://doi.org/10.1080/01431161.2016.1225182. Bagheri, N., Bordbar. M. (2014). Solutions for fast development of precision agriculture in Iran. Agric Eng Int: CIGR Journal, 16(3), 119-123. Bagheri, N., Ahmadi, H., Alavipanah, S. K., & Omid, M. (2013). Multispectral remote sensing for site-specific nitrogen fertilizer management. Brazilian Journal of Agricultural Research, 48(10), 1394-1401. https://doi.org/10.1590/S0100-204X2013001000011. Ballester, C., Hornbuckle, J., Brinkhoff, J., Smith, J., & Quayle, W. (2017). Assessment of In-Season Cotton Nitrogen Status and Lint Yield Prediction from Unmanned Aerial System Imagery. Remote Sensing, 9, 1149. https://doi.org/doi:10.3390/rs9111149. Caturegli, L., Corniglia, M., Gaetani, M., Grossi, N., Magni, S., Migliazzi, M., & Volterrani, M. (2016). Unmanned aerial vehicle to estimate nitrogen status of turfgrasses. PloS one, 11(6), e0158268. https://doi.org/10.1371/journal.pone.0158268. Cilia, C., Panigada, C., Rossini, M., Meroni, M., Busetto, L., Amaducci, S., Boschetti, M., Picchi, V., & Colombo, R. (2014). Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing, 6(7), 6549-6565. https://doi.org/10.3390/rs6076549. Chen, J., Yang, C., Wu, Sh., Chung, Y., Linton, A., Charles, A. L., & Chen, Ch. (2007). Leaf chlorophyll content and surface spectral reflectance of tree species along a terrain gradient in Taiwan's Kenting National Park. Botanical Studies, 48, 71-77. Evadas, R., Lamb, D. W., Simpfendorfer, S., & Backhouse, D. (2009). Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precision Agriculture, 10, 459-470. https://DOI: 10.1007/s11119-008-9100-2. Diker, K., & Bausch, W. C. (2003). Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosystems Engineering, 85(4), 437-447. https://doi.org/10.1016/S1537-5110(03)00097-7. Elvanidi, A., Katsoulas, N., Augoustaki, D., Loulou I., & Kittas, C. (2018). Crop reflectance measurements for nitrogen deficiency detection in a soilless tomato crop. Biosystems engineering, 176, 1-11. https://doi.org/10.1016/j.biosystemseng.2018.09.019. Gilliot, J. M., Michelin, J., Hadjard, D., & Houot, S. (2020). An accurate method for predicting spatial variability of maize yield from UAV‑based plant height estimation: a tool for monitoring agronomic field experiments. Precision Agriculture, 22(6), 1-25. https://doi.org/10.1007/s11119-020-09764-w. Guo, J., Zhang, J., Xiong, Sh., Zhang, Zh., Wei, Q., Zhang, W., Feng, W., & Ma, X. (2021). Hyperspectral assessment of leaf nitrogen accumulation for winter wheat using different regression modeling. Precision Agriculture, 22, 1634-1658. https://doi.org/10.1007/s11119-021-09804-z. Habibullah, M., Mohebian, M. R., Soolanayakanahally, R., Bahar, A. N., Vail, S., Wahid, K. A., & Dinh, A. (2020). Low-cost multispectral sensor array for determining leaf nitrogen status. Nitrogen, 1(1), 67-80. https://doi.org/10.3390/nitrogen1010007. Hawkins, J. A., Sawyer, J. E., Barker, D. W., & Lundvall, J. P. (2007). Using relative chlorophyll meter values to determine nitrogen application rates for corn. Agronomy Journal. 99, 1034-1040. https://doi.org/10.2134/agronj2006.0309. Kizilgeci, F., Yildirim, M., Islam, M. S., Ratnasekera, D., Iqbal, M. A., & Sabagh, A. E. (2021). Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability, 13(7), 3725. https://doi.org/10.3390/su13073725. Krienke, B., Ferguson, R. B., Schlemmer, M., Holland, K., Marx, D., & Eskridge, K. (2017). Using an unmanned aerial vehicle to evaluate nitrogen variability and height effect with an active crop canopy sensor. Precision Agriculture, 18(6), 900-915. https://doi 10.1007/s11119-017-9534-5. Laruffa, J. M., Raun, W. R., Phillips, S. B., Solie, J. B., Stone, M. L., & Johnson, G. V. (2001). Optimum field element size for maximum yields in winter wheat, using variable nitrogen rates. Journal of Plant Nutrition, 24, 313-325. https://doi.org/10.1081/PLN-100001390. Lebourgeois, V., Begue, A., Labbe, S., Houles, M., & Martine, J. F. (2012). A light-weight multi-spectral aerial imaging system for nitrogen crop monitoring. Precision Agriculture, 13, 525-541. https://doi.org/10.1007/s11119-012-9262-9. Li, J., Zhang, F., Qian, X., Zhu, Y., & Shen, G. (2015). Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle. Remote Sensing Letters, 6(3), 183–189. http://dx.doi.org/10.1080/2150704X.2015.1021934. Liang, L., Di, L., Huang, T., Wang, J., Lin, L., Wang, L., & Yang, M. (2018). Estimation of leaf nitrogen content in wheat using new hyperspectral indices and a random forest regression algorithm. Remote Sensing, 10(12), 1940. https:// doi. org/ 10. 3390/ rs101 21940. Lin, F. F., Qiu, L. F., Deng, J. S., Shi, Y. Y., Chen, L. S., & Wang, K. (2010). Investigation of SPAD Meter-Based Indices for Estimating Rice Nitrogen Status. Computers and Electronics in Agriculture, 71, 60-65. https://doi.org/10.1016/j.compag.2009.09.006. Liu, S., Li, L., Gao, W., Zhang, Y., Liu, Y., Wang, S., & Lu, J. (2018). Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Computers and Electronics in Agriculture, 151, 185-195. https://doi.org/10.1016/j.compag.2018.05.026. Maresma, A., Ariza, M., Martínez, E., Loveras, J., Martínez-Casasnovas, J. A. (2016). Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sensing, 8, 973. https://doi:10.3390/rs8120973. Mistele, B., & Schmidhalter, U. (2008). Spectral measurements of the total aerial N and biomass dry weight in maize using a quadrilateral-view optic. Field Crops Research, 106(1), 94-103. https://doi.org.10.1016/j.fcr.2007.11.002. Nasielski, J., Earl, H., & Deen, B. (2019). Luxury vegetative nitrogen uptake in maize buffers grain yield under post-silking water and nitrogen stress: a mechanistic understanding. Frontiers in plant science, 10, 318. https://doi.org/10.3389/fpls.2019.00318. Osco, L. P., Junior, J. M., Ramos, A. P. M., Furuya, D. E. G., Santana, D. C., Teodoro, L. P. Gonçalves, W. N.; Baio, F. H. R., Pistori, H., Junior, C. A. d. S., & Teodoro, P. E. (2020). Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques. Remote Sensing, 12, 3237. https://doi.org/10.3390/rs12193237. Padua, L., Vanko, J., Hruska, J., Adao, T., Sousa, J. J., Peres, E., & Morais, R. (2017). UAS, sensors, and data processing in agroforestry: a review towards practical applications. International Journal of Remote Sensing. http://dx.doi.org/10.1080/01431161.2017.1297548. Rahimi Jahangirlou, M., Akbari, G. A., Alahdadi, I., Soufizadeh, S., Ludemann, C., & Parsons, D. (2022). Phenotypic predictors of dent maize grain quality based on different genetics and management practices Journal of Cereal Science, 103388. https://doi.org/10.1016/j.jcs.2021.103388. Rahimi Jahangirlou, M., Akbari, G. A., Alahdadi, I., Soufizadeh, S., & Parsons, D. (2021). Grain Quality of Maize Cultivars as a Function of Planting Dates, Irrigation and Nitrogen Stress: A Case Study from Semiarid Conditions of Iran. Agriculture, 11(1), 11. https://doi.org/10.3390/agriculture11010011. Rhezali, A., & Lahlali, R. (2017). Nitrogen (N) mineral nutrition and imaging sensors for determining N status and requirements of maize. Journal of Imaging, 3(4), 51. https://doi.org/10.3390/jimaging3040051. Shendryk, Y., Sofonia, J., Garrard, R., Rist, Y., Skocaj, D., & Thorburn, P. (2020). Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. International Journal of Applied Earth Observation and Geoinformation, 92, 102177. https://doi.org/10.1016/j.jag.2020.102177. Wen, P., Shi, Z., Li, A., Ning, F., Zhang, Y., Wang, R., & Li, J. (2020). Estimation of the vertically integrated leaf nitrogen content in maize using canopy hyperspectral red edge parameters. Precision Agriculture, 22, 984-1005. https://doi.org/10.1007/s11119-020-09769-5. Xu, X., Fan, L., Li, Z., Meng, Y., Feng, H., Yang, H., & Xu, B. (2021). Estimating Leaf Nitrogen Content in Corn Based on Information Fusion of Multiple-Sensor Imagery from UAV. Remote Sensing, 13(3), 340. https://doi.org/10.3390/rs13030340. Yang, M., Hassan, M. A., Xu, K., Zheng, C., Rasheed, A., Zhang, Y., Jin, X., Xia, X., Xiao, Y., & He, Z. (2020). Assessment of water and nitrogen use efficiencies through UAV-based multispectral phenotyping in winter wheat. Frontiers in plant science, 11, 927. https://doi: 10.3389/fpls.2020.00927. Yang, B., Wang, M., Sha, Z., Wang, B., Chen, J., Yao, X., Cheng, T., Cao, W., & Zhu, Y. (2019). Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles. Sensors, 19, 4416. https://doi:10.3390/s19204416. Zarco-Tejada, P. J., Ustin, S. L., & Whiting, M. L. (2005). Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agronomy Journal, 97, 641-653. https://doi: 10.2134/agronj2003.0257. Zhang, K., Ge, X., Liu, X., Zhang, Z., Liang, Y., Tian, Y., Cao, Q., Zhu, Y., & Liu, X. (2017). Evaluation of the chlorophyll meter and GreenSeeker for the assessment of rice nitrogen status. Advances in Animal Biosciences, 8(2), 359-363. https://doi.org/10.1017/S2040470017000917. Zhu, Y., Zhou, D., Yao, X., Tian, Y., & Cao, W. (2007). Quantitative relationships of leaf nitrogen status to canopy spectral reflectance in rice. Australian Journal of Agricultural Research, 58(11), 1077-1085. https://doi. org/ 10. 1071/ AR064 13. Zillmann, E., Graeff, S., Link, J., Batchelor, W. D., & Claupein, W. (2006). Assessment of Cereal Nitrogen Requirements Derived by Optical On-the-Go Sensors on Heterogeneous Soils. Agronomy Journal, 98(3), 682-690. https://doi.org/10.2134/agronj2005.0253. | ||
آمار تعداد مشاهده مقاله: 348 تعداد دریافت فایل اصل مقاله: 203 |