تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,241 |
تعداد دریافت فایل اصل مقاله | 97,222,480 |
تحلیل آسیبپذیری بلوکهای شهری تهران در برابر زلزله با استفاده از طراحی و اجرای یک مدل مکانـ مبنا | ||
مجله علمی " آمایش سرزمین " | ||
دوره 14، شماره 2، مهر 1401، صفحه 679-708 اصل مقاله (2.39 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jtcp.2022.347421.670340 | ||
نویسندگان | ||
رسول افسری* 1؛ سامان نادی زاده شورابه2 | ||
1استادیار، گروه شهرسازیـ پدافند غیرعامل، دانشگاه عالی دفاع ملی، تهران | ||
2دانشجوی دکتری، گروه سنجش از دور و GIS، دانشکدة جغرافیا، دانشگاه تهران، تهران | ||
چکیده | ||
ارزیابی آسیبپذیری یکی از پیشنیازهای تحلیل ریسک در مدیریت بلایاست. آسیبپذیری در برابر زلزله بهویژه در مناطق شهری در طول سالیان متمادی به دلیل وجود ساختارهای پیچیدة شهری و توسعة سریع افزایش یافته است. به منظور انجام دادن اقدامات پیشگیرانه و کاهش خسارات ناشی از زلزله، تعیین مناطق آسیبپذیر و اندیشیدن به تمهیدات لازم ضروری به نظر میرسد. بنابراین، هدف از این مطالعه بررسی آسیبپذیری بلوکها شهری در تهران با استفاده از یک مدل مکانـ مبنا بود. برای نیل به این هدف، ابتدا معیارهای مؤثر جهت ارزیابی آسیبپذیری زلزله در سه گروه در معرض قرار گرفتن، حساسیت، و ظرفیت انطباقپذیری (مجموعاً 16 معیار مکانی) قرار گرفتند. با استفاده از نظر کارشناسان و مدل فرایند تحلیل شبکهای اهمیت هر یک از معیارها مشخص شد. از توابع فازی و مدل روش میانگین وزنی مرتبشده به ترتیب جهت نرمالسازی نقشة معیارها و تهیة نقشههای آسیبپذیری در سناریوهای مختلف استفاده شد. در نهایت آنالیز حساسیت معیارها انجام شد. نتایج نشان داد معیارهای تراکم جمعیت آسیبپذیر و میانگین شیب به ترتیب دارای بیشترین و کمترین اهمیتاند. نقشههای آسیبپذیری مختلف نشان داد مناطق شمالی منطقة مورد مطالعه در همة سناریوها در کلاس آسیبپذیری قرار دارند. پایداری و قابلیت اطمینان نتایج خروجی با روش آنالیز حساسیت ارزیابی شد. نتایج نشان داد تغییر وزن معیارها تأثیر قابل توجهی بر خروجیهای مدل ندارد و بهوضوح پایداری مدل پیشنهادی را اثبات میکند. | ||
کلیدواژهها | ||
آسیبپذیری؛ بلوکهای شهری؛ تهران؛ زلزله؛ مکانـ مبنا | ||
عنوان مقاله [English] | ||
An Analysis of the Vulnerability of Tehran Urban Blocks to Earthquake Via Designing and Implementing a Location-Base Model | ||
نویسندگان [English] | ||
Rasoul Afsari1؛ Saman Nadizadeh Shorabeh2 | ||
1Assistant Professor, Department of Urban Planning-Passive Defense, Superme National Defense University, Tehran | ||
2PhD Student, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran | ||
چکیده [English] | ||
The vulnerability appraisal is one of the prerequisites of risk analysis in disaster management. Vulnerability to earthquake, especially in urban areas, has increased over years due to the existence of complex urban structures and rapid development. In order to take preemptive measures and reduce the damages of earthquake, the determination of vulnerable areas and implementation of necessary measures seem inevitable. Accordingly, the present study set out to examine the vulnerability of Tehran urban blocks via a location-base model. To attain this objective, first the criteria effective on the evaluation of earthquake vulnerability were divided into three groups, namely exposure, sensitivity, and adaptation capability (16 location criteria in general). Using the expert opinions and network analysis model, the importance of each of the criteria was determined. Fuzzy functions and ordered weighted averaging method were used to normalize the criteria map and develop vulnerability maps under various scenarios. Finally, the sensitivity analysis of the criteria was carried out. The results showed that vulnerable population density and average slope were the criteria with the most and least importance, respectively. The vulnerability maps demonstrated that the areas to the north of the area under study are in the vulnerable class under all scenarios. The stability and dependability of the output results were assessed using sensitivity analysis. The results indicated that changing the weight of the criteria does not have a significant effect on the model outputs, a finding that clearly proves the stability of the model. | ||
کلیدواژهها [English] | ||
vulnerability, earthquake, urban blocks, location-base, Tehran | ||
مراجع | ||
حیدریفر، محمدرئوف؛ عبدالله محمودی (1400). «تحلیل آسیبپذیری کاربری اراضی شهری جوانرود در برابر زلزله با استفاده از تحلیل شبکهای و سیستم اطلاعات جغرافیایی»، پژوهشهای جغرافیای انسانی، د 53، ش 1، ص 119 ـ 137.
خدمتزاده، علی؛ میرنجف موسوی؛ اردشیر یوسفزاده (1400). «تحلیل شاخصهای آسیبپذیری شهری با رویکرد مدیریت بحران زلزله (مطالعة موردی: شهر ارومیه)»، مطالعات برنامهریزی سکونتگاههای انسانی، د 16، ش 1، ص 43 ـ 62.
References
Adger, W. N. (1999). “Social vulnerability to climate change and extremes in coastal Vietnam”, World development, 27(2), pp. 249-269.
Adger, W. N. & Kelly, P. M. (1999). “Social vulnerability to climate change and the architecture of entitlements”, Mitigation and adaptation strategies for global change, 4(3), pp. 253-266.
Afsari, R., Nadizadeh Shorabeh, S., Kouhnavard, M., Homaee, M., & Arsanjani, J. J. (2022). “A Spatial Decision Support Approach for Flood Vulnerability Analysis in Urban Areas: A Case Study of Tehran”, ISPRS International Journal of Geo-Information, 11(7), 380.
Alam, M. S. & Haque, S. M. (2022). “Multi-dimensional earthquake vulnerability assessment of residential neighborhoods of Mymensingh City, Bangladesh: A spatial multi-criteria analysis based approach”, Journal of Urban Management, 11(1), pp. 37-58.
Alizadeh, M., Hashim, M., Alizadeh, E., Shahabi, H., Karami, M. R., Beiranvand Pour, A., ... & Zabihi, H. (2018). “Multi-criteria decision making (MCDM) model for seismic vulnerability assessment (SVA) of urban residential buildings”, ISPRS International Journal of Geo-Information, 7(11), 444.
Alwang, J., Siegel, P. B., & Jorgensen, S. L. (2001). Vulnerability: a view from different disciplines (Vol. 115, p. 60). Social protection discussion paper series.
Antypa, N., Verkuil, B., Molendijk, M., Schoevers, R., Penninx, B. W., & Van Der Does, W. (2017). “Associations between chronotypes and psychological vulnerability factors of depression”, Chronobiology international, 34(8), pp. 1125-1135.
Ashtari, M., Hatzfeld, D., & Kamalian, N. (2005). “Microseismicity in the region of Tehran”, Tectonophysics, 395(3-4), pp. 193-208.
Barbat, A. H., Carreño, M. L., Pujades, L. G., Lantada, N., Cardona, O. D., & Marulanda, M. C. (2010). “Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area”, Structure and Infrastructure Engineering, 6(1-2), pp. 17-38.
Belohlavek, R., De Baets, B., Outrata, J., & Vychodil, V. (2010). “Computing the lattice of all fixpoints of a fuzzy closure operator”, IEEE Transactions on Fuzzy Systems, 18(3), pp. 546-557.
Boloorani, A. D., Shorabeh, S. N., Samany, N. N., Mousivand, A., Kazemi, Y., Jaafarzadeh, N., ... & Rabiei, J. (2021). “Vulnerability mapping and risk analysis of sand and dust storms in Ahvaz, IRAN”, Environmental Pollution, 279, 116859.
Brooks, N. (2003). “Vulnerability, risk and adaptation: A conceptual framework”, Tyndall Centre for climate change research working paper, 38(38), pp. 1-16.
Castillo, O., Amador-Angulo, L., Castro, J. R., & Garcia-Valdez, M. (2016). “A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems”, Information Sciences, 354, pp. 257-274.
Centre for Research on the Epidemiology of Disasters (CRED). EM-DAT. The International Disaster Database, Available online: https://www.emdat.be/ (accessed on 1 April 2020).
Chen, H., Wood, M. D., Linstead, C., & Maltby, E. (2011). “Uncertainty analysis in a GIS-based multi-criteria analysis tool for river catchment management”, Environmental modelling & software, 26(4), pp. 395-405.
Cinner, J. E., McClanahan, T. R., Graham, N. A., Daw, T. M., Maina, J., Stead, S. M., ... & Bodin, Ö. (2012). “Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries”, Global Environmental Change, 22(1), pp. 12-20.
Cruz-Milán, O., Simpson, J. J., Simpson, P. M., & Choi, W. (2016). “Reassurance or reason for concern: Security forces as a crisis management strategy”, Tourism Management, 56, pp. 114-125.
Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2012). “Social vulnerability to environmental hazards”, In Hazards vulnerability and environmental justice (pp. 143-160). Routledge.
Cutter, S. L., Emrich, C. T., Webb, J. J., & Morath, D. (2009). “Social vulnerability to climate variability hazards: A review of the literature”, Final Report to Oxfam America, 5, pp. 1-44.
De Barros, L. C., Bassanezi, R. C., & Lodwick, W. A. (2016). First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics, Springer-Verlag Berlin An.
Delavar, M. R. & Sadrykia, M. (2020). “Assessment of enhanced Dempster-Shafer theory for uncertainty modeling in a GIS-based seismic vulnerability assessment model, case study—Tabriz city”, ISPRS International Journal of Geo-Information, 9(4), 195.
Delgado, M. G. & Sendra, J. B. (2004). “Sensitivity analysis in multicriteria spatial decision-making: a review”, Human and ecological risk assessment, 10(6), pp. 1173-1187.
Dow, K. (1992). “Exploring differences in our common future (s): the meaning of vulnerability to global environmental change”, Geoforum, 23(3), pp. 417-436.
Downing, T. E., Patwardhan, A., Klien, R., Mukhala, E., Stephen, L., Winograd, M., & Ziervogel, G. (2003). “Vulnerability assessment for climate adaptation”, APF technical paper, 3.
Ebrahimian Ghajari, Y., Alesheikh, A. A., Modiri, M., Hosnavi, R., & Abbasi, M. (2017). “Spatial modelling of urban physical vulnerability to explosion hazards using GIS and fuzzy MCDA”, Sustainability, 9(7), 1274.
Fellmann, T. (2012). “The assessment of climate change-related vulnerability in the agricultural sector: reviewing conceptual frameworks”, Building resilience for adaptation to climate change in the agriculture sector, 23, 37.
Firozjaei, M. K., Nematollahi, O., Mijani, N., Shorabeh, S. N., Firozjaei, H. K., & Toomanian, A. (2019). “An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning”, Renewable Energy, 136, pp. 1130-1146.
Fuessel, H. M. (2005). Vulnerability in climate change research: A comprehensive conceptual framework.
Füssel, H. M. (2007). “Vulnerability: A generally applicable conceptual framework for climate change research”, Global environmental change, 17(2), pp. 155-167.
Füssel, H. M. & Klein, R. J. (2006). “Climate change vulnerability assessments: an evolution of conceptual thinking”, Climatic change, 75(3), pp. 301-329.
Ghajari, Y. E., Alesheikh, A. A., Modiri, M., Hosnavi, R., Abbasi, M., & Sharifi, A. (2018). “Urban vulnerability under various blast loading scenarios: Analysis using GIS-based multi-criteria decision analysis techniques”, Cities, 72, pp. 102-114.
Ghaychi Afrouz, S., Farzampour, A., Hejazi, Z., & Mojarab, M. (2021). “Evaluation of Seismic Vulnerability of Hospitals in the Tehran Metropolitan Area”, Buildings, 11(2), 54.
Hamby, D. M. (1993). A numerical comparison of sensitivity analysis techniques (No. WSRC-MS-93-586), Westinghouse Savannah River Co., Aiken, SC (United States).
Heydarifar, M.R. & Mahmoudi, A. (1400). “Vulnerability analysis of Javanroud urban land use against earthquakes using network analysis and geographic information system”, Human Geography Research, 53, Vol. 1, pp. 119-137. (in Persian)
ISDR, U. (2004). “Living with risk”, United Nation International Strategy for Disaster Reduction, United Nation-International Strategy for Disaster Risk Reduction.
Kamranzad, F., Memarian, H., & Zare, M. (2020). “Earthquake risk assessment for Tehran, Iran”, ISPRS International Journal of Geo-Information, 9(7), 430.
Karimzadeh, S., Feizizadeh, B., & Matsuoka, M. (2017). “From a GIS-based hybrid site condition map to an earthquake damage assessment in Iran: Methods and trends”, International journal of disaster risk reduction, 22, pp. 23-36.
Kelly, P. M. & Adger, W. N. (2000). “Theory and practice in assessing vulnerability to climate change andFacilitating adaptation”, Climatic change, 47(4), pp. 325-352.
Khedmt-zadeh, A., Mousavi, M.N., & Yusufzadeh, A. (1400). “Analysis of urban vulnerability indicators with the approach of earthquake crisis management (case study: Urmia city)”, Human Settlements Planning Studies, 16, Vol. 1, pp. 43-62. (in Persian)
Kohn, N. A. (2014). “Vulnerability theory and the role of government”, Yale JL & Feminism, 26, 1.
Leggieri, V., Mastrodonato, G., & Uva, G. (2022). “GIS Multisource Data for the Seismic Vulnerability Assessment of Buildings at the Urban Scale”, Buildings, 12(5), 523.
Malczewski, J. (2006). “GIS‐based multicriteria decision analysis: a survey of the literature”, International journal of geographical information science, 20(7), pp. 703-726.
Malczewski, J. & Rinner, C. (2015). Multicriteria decision analysis in geographic information science (Vol. 1, pp. 55-77). New York: Springer.
Moradi, M., Delavar, M. R., & Moshiri, B. (2017). “A GIS-based multi-criteria analysis model for earthquake vulnerability assessment using Choquet integral and game theory”, Natural hazards, 87(3), pp. 1377-1398.
Moreno, A. & Becken, S. (2009). “A climate change vulnerability assessment methodology for coastal tourism”, Journal of Sustainable Tourism, 17(4), pp. 473-488.
Muris, P., Schmidt, H., Lambrichs, R., & Meesters, C. (2001). “Protective and vulnerability factors of depression in normal adolescents”, Behaviour research and therapy, 39(5), pp. 555-565.
Nayak, P. & Devulapalli, A. (2015). “A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime”, IEEE sensors journal, 16(1), pp. 137-144.
Nazmfar, H., Saredeh, A., Eshgi, A., & Feizizadeh, B. (2019). “Vulnerability evaluation of urban buildings to various earthquake intensities: A case study of the municipal zone 9 of Tehran”, Human and Ecological Risk Assessment: An International Journal, 25(1-2), pp. 455-474.
OECD. Financial Management of Earthquake Risk; Organisation for Economic Co-operation and Development: Paris, France, 2018; Available online: https://www.oecd.org/finance/insurance/Financial-management-of-earthquake-risk.pdf (accessed on 24 July 2020).
Omidvar, B., Gatmiri, B., & Derakhshan, S. (2012). “Experimental vulnerability curves for the residential buildings of Iran”, Natural Hazards, 60(2), pp. 345-365.
Pearce, T., Smit, B., Duerden, F., Ford, J. D., Goose, A., & Kataoyak, F. (2010). “Inuit vulnerability and adaptive capacity to climate change in Ulukhaktok, Northwest Territories, Canada”, Polar Record, 46(2), pp. 157-177.
Pearson, L. J., Nelson, R., Crimp, S., & Langridge, J. (2011). “Interpretive review of conceptual frameworks and research models that inform Australia’s agricultural vulnerability to climate change”, Environmental Modelling & Software, 26(2), pp. 113-123.
Polsky, C., Neff, R., & Yarnal, B. (2007). “Building comparable global change vulnerability assessments: The vulnerability scoping diagram”, Global environmental change, 17(3-4), pp. 472-485.
Pritchett, L., Suryahadi, A., & Sumarto, S. (2000). Quantifying vulnerability to poverty: A proposed measure, applied to Indonesia (No. 2437). World Bank Publications.
Rezvani, M., Nickravesh, F., Astaneh, A. D., & Kazemi, N. (2022). “A risk-based decision-making approach for identifying natural-based tourism potential areas”, Journal of Outdoor Recreation and Tourism, 37, 100485.
Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process (Vol. 4922, No. 2). Pittsburgh: RWS publications.
Sadeghi-Niaraki, A., Varshosaz, M., Kim, K., & Jung, J. J. (2011). “Real world representation of a road network for route planning in GIS”, Expert systems with applications, 38(10), pp. 11999-12008.
Schröter, D., Polsky, C., & Patt, A. G. (2005). “Assessing vulnerabilities to the effects of global change: an eight step approach”, Mitigation and adaptation strategies for global change, 10(4), pp. 573-595.
Shorabeh, S. N., Firozjaei, H. K., Firozjaei, M. K., Jelokhani-Niaraki, M., Homaee, M., & Nematollahi, O. (2022). “The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives”, Renewable and Sustainable Energy Reviews, 168, 112778.
Shorabeh, S. N., Firozjaei, M. K., Nematollahi, O., Firozjaei, H. K., & Jelokhani-Niaraki, M. (2019). “A risk-based multi-criteria spatial decision analysis for solar power plant site selection in different climates: A case study in Iran”, Renewable Energy, 143, pp. 958-973.
Silva, V., Amo-Oduro, D., Calderon, A., Costa, C., Dabbeek, J., Despotaki, V., ... & Pittore, M. (2020). “Development of a global seismic risk model”, Earthquake Spectra, 36(1_suppl), pp. 372-394.
Singh, A. (2003). Assessing Human Vulnerability to Environmental Change: Concepts, Issues, Methods, and Case Studies. UNEP/Earthprint.
Smit, B. & Wandel, J. (2006). “Adaptation, adaptive capacity and vulnerability”, Global environmental change, 16(3), pp. 282-292.
Swiss Reinsurance Company. SwissRe, Sigma Research. Natural Catastrophes 1990–2018. Available online: https://sigma-explorer.com/ (accessed on 1 April 2020).
Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., ... & Schiller, A. (2003). “A framework for vulnerability analysis in sustainability science”, Proceedings of the national academy of sciences, 100(14), pp. 8074-8079.
UNDP. (2004). Reducing disaster risk: a challenge for development-a global report, United Nations.
Yariyan, P., Zabihi, H., Wolf, I. D., Karami, M., & Amiriyan, S. (2020). “Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran”, International Journal of Disaster Risk Reduction, 50, 101705.
Yavuz Kumlu, K. B. & Tüdeş, Ş. (2019). “Determination of earthquake-risky areas in Yalova City Center (Marmara region, Turkey) using GIS-based multicriteria decision-making techniques (analytical hierarchy process and technique for order preference by similarity to ideal solution)”, Natural Hazards, 96(3), pp. 999-1018.
Zadeh, L. A. (2015). “Fuzzy logic—a personal perspective”, Fuzzy sets and systems, 281, pp. 4-20.
Zakour, M. J. & Gillespie, D. F. (2013). “Vulnerability theory”, In Community disaster vulnerability (pp. 17-35). Springer, New York, NY.
Zhang, J. S. & Jia, Z. K. (2010). “The study on assessment index of urban social vulnerability to earthquake disaster”, Technol. Guide, 36, pp. 12-14.
| ||
آمار تعداد مشاهده مقاله: 424 تعداد دریافت فایل اصل مقاله: 418 |