تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,114,365 |
تعداد دریافت فایل اصل مقاله | 97,218,124 |
Evaluating the Effect of Thermal Shock on the Development of Micro-cracks in Granitoids Using Capillary Water Absorption Test and P-wave velocity Test | ||
Geopersia | ||
مقاله 7، دوره 13، شماره 1 - شماره پیاپی 22287825، فروردین 2023، صفحه 103-121 اصل مقاله (1.11 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/geope.2022.347814.648671 | ||
نویسندگان | ||
leila Ahmadi1؛ MohammadHossein Ghobadi* 1؛ Ali asghar Sepahi Garoo1؛ Leili Izadikian1؛ Seiede razieh Jafari2 | ||
1Department of Geology. Faculty of Science. Bu -Ali Sina University. Hamedan. Iran. | ||
2Department of geology, Payame Noor University, PO BOX 19359-3697, Tehran, Iran | ||
چکیده | ||
Microcracks play an essential role in controlling rocks’ physical and mechanical properties and thus are a vast research subject in engineering geology. The present study aimed to investigate microcracks developed in granitoids. Thermal shock at four temperatures of 250, 450, 650, and 850℃ was applied to induce microcrack in granitoids. The rate of microcracks development and their effect on the physical properties of the rocks were assessed using the measurement of the P-waves velocity and capillary water absorption test. Both tests showed that the thermal shock, even in one cycle, has developed micro cracks. Moreover, the increased rate in effective porosity and total porosity of granitoids due to the growth of microcracks would estimate by the capillary water absorption test. This study showed that microcracks development directly relates to the increase in temperature at the thermal shock. The capillary water absorption test could measure the granitoids porosity as well as the water absorption and retention in the induced microcracks. These two tests could investigate microcracks development from two different points of view. The p-wave velocity estimates the propagation of different types of microcracks, while the capillary absorption test evaluates the connected microcracks. The effective porosity differently affects the rock mass efficiency in varied projects. Finally, total porosity and effective porosity are developed independently of each other through thermal-induced micro-cracks. | ||
کلیدواژهها | ||
Micro-Crack؛ Thermal Shock؛ Capillary Water Absorption؛ Speed Of Sound؛ Granitoid | ||
عنوان مقاله [English] | ||
- | ||
مراجع | ||
Alm, O., Jaktlund, L.L., Shaoquan, K., 1985. The influence of microcrack density on the elastic and fracture mechanical properties of Stripa granite. Physics of the Earth and Planetary Interiors, 40: 161- 179. Aman, M., Espinoza, D.N., Ilgen, A.G., Major, J.R., Eichhubl, P., Dewers, T.A., 2018. CO2‐induced chemo‐mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing. Greenhouse Gases: Science and Technology, 8: 133-149. Blake, O.O., Faulkner, D.R., 2016. The effect of fracture density and stress state on the static and dynamic bulk moduli of Westerly granite. Journal of Geophysical Research: Solid Earth, 121: 2382- 2399. Chaki, S., Takarli, M., Agbodjan, W.P., 2008. Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22: 1456-1461. Chandrasekharam, D., Pabasara Kumari, W.G., Avanthi Isaka, B.L., Gamage, R.P., Rathnaweera, T.D., Anne Perera, M.S., 2018. An influence of thermally-induced micro-cracking under cooling treatments: Mechanical characteristics of Australian granite. Energies, 11: 1338. Costa, K. O. B., Xavier, G. C., Marvila, M. T., Alexandre, J., Azevedo, A. R. G., Monteiro, S. N., 2021. Influence of high temperatures on physical properties and microstructure of gneiss. Bulletin of Engineering Geology and the Environment. 80(9): 7069-7081. Darot, M., Gueguen, Y., Baratin, M.L., 1992. Permeability of thermally cracked granite. Geophysical Research Letters, 19: 869-872. Fahimifar, A., Soroush, H., 2001. Rock mechanic test: theoretical aspects and standards. A Publication of Amirkabir University of Technology, 719 pp. (in Persian) Freire-Lista, D.M., Fort, R., Varas-Muriel, M.J., 2016. Thermal stress-induced microcracking in building granite. Engineering geology, 206: 83-93. Gao, J., Fan, L., Xi, Y., Du, X. 2022. Effects of cooling thermal shock on the P-wave velocity of granite and its microstructure analysis under immersion in water, half immersion in water, and near-water cooling conditions. Bulletin of Engineering Geology and the Environment, 81(1): 1-13. Ge, S., Shi, B., Zhang, S., Zhai, X., Wu, C., 2022. Thermal damage and mechanical properties of high temperature sandstone with cyclic heating–cooling treatment. Bulletin of Engineering Geology and the Environment, 81(7): 1-13. Gomah, M. E., Li, G., Bader, S., Elkarmoty, M., Ismael, M. 2021. Damage evolution of granodiorite after heating and cooling treatments. Minerals, 11(7): 779. Gomah, M. E., Li, G., Sun, C., Jiahui, X., Sen, Y., Jinghua, L., Elkarmoty, M., 2022. Macroscopic and microscopic research on Egyptian granodiorite behavior exposed to the various heating and cooling strategies. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(5): 1-22. Griffiths, L., Heap, M.J., Baud, P., Schmittbuhl, J., 2017. Quantification of microcrack characteristics 120 Ahmadi et al. and implications for stiffness and strength of granite. International Journal of Rock Mechanics and Mining Sciences, 100: 138-150. Guo, T.Y., Wong, L.N.Y., Wu, Z., 2021. Microcracking behavior transition in thermally treated granite under mode I loading. Engineering Geology, 282: 105992. Homand-Etienne, F., Houpert, R., 1989. Thermally induced microcracking in granites: characterization and analysis. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26: 125-134. Pergamon. Isaka, B.L.A., Gamage, R.P., Rathnaweera, T.D., Perera, M.S.A., Chandrasekharam, D., Kumari, W.G.P., 2018. An influence of thermally-induced micro-cracking under cooling treatments: mechanical characteristics of Australian granite. Energies, 11: 1338. Kahraman, S. A. İ. R., 2001. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 38(7): 981-994. Khan, H., Sajid, M., 2023. Investigating the textural and physico-mechanical response of granites to heat treatment. International Journal of Rock Mechanics and Mining Sciences, 161: 105281. Kumari, W.G.P., Beaumont, D.M., Ranjith, P.G., Perera, M.S.A., Isaka, B.A., Khandelwal, M., 2019. An experimental study on tensile characteristics of granite rocks exposed to different hightemperature treatments. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 5: 47- 64. Liu, H., Zhang, K., Liu, T., Cao, H., Wang, Y., 2022. Experimental and numerical investigations on tensile mechanical properties and fracture mechanism of granite after cyclic thermal shock. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(1): 1-22. Meng, Q. B., Qian, W., Liu, J. F., Zhang, M. W., Lu, M. M., Wu, Y., 2020. Analysis of triaxial compression deformation and strength characteristics of limestone after high temperature. Arabian Journal of Geosciences, 13(4): 1-14. Nara, Y., Morimoto, K., Yoneda, T., Hiroyoshi, N., Kaneko, K., 2011. Effects of humidity and temperature on subcritical crack growth in sandstone. International Journal of Solids and Structures, 48: 1130-1140. Nasseri, M.H.B., Schubnel, A., Young, R.P., 2007. Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. International Journal of Rock Mechanics and Mining Sciences, 44: 601-616. Nicco, M., Holley, E. A., Hartlieb, P., Kaunda, R., Nelson, P. P., 2018. Methods for characterizing cracks induced in rock. Rock Mechanics and Rock Engineering , 51(7): 2075-2093. Nicco, M., Holley, E.A., Hartlieb, P., Pfaff, K., 2020. Textural and mineralogical controls on microwave-induced cracking in granites. Rock Mechanics and Rock Engineering, 53: 4745-4765. Olasolo, P., Juárez, M. C., Morales, M. P., Liarte, I. A. 2016. Enhanced geothermal systems (EGS): A review. Renewable and Sustainable Energy Reviews, 56: 133-144. Ortega, O., Marrett, R., 2000. Prediction of macrofracture properties using microfracture information, Mesaverde Group sandstones, San Juan basin, New Mexico. Journal of Structural Geology, 22: 571- 588 Rossi, E., Kant, M.A., Madonna, C., Saar, M.O., von Rohr, P.R., 2018. The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method. Rock Mechanics and Rock Engineering, 51: 2957-2964. Sano, O., Kudo, Y., 1992. Relation of fracture resistance to fabric for granitic rocks. Pure and Applied Geophysics, 138: 657-677. Siegesmund, S., Sousa, L. Knell, C., 2018. Thermal expansion of granitoids. Environmental Earth Science, 77(2):1-29. Sousa, L.M., del Río, L.M.S., Calleja, L., de Argandona, V.G.R., Rey, A.R., 2005. Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Engineering geology, 77: 153-168. Swanson, E., Wilson, J., Broome, S., Sussman, A., 2020. The Complicated Link Between Material Properties and Microfracture Density for an Underground Explosion in Granite. Journal of Geophysical Research: Solid Earth, 125. e2020JB019894. Takemura, T., Golshani, A., Oda, M., Suzuki, K., 2003. Preferred orientations of open microcracks in granite and their relation with anisotropic elasticity. International Journal of Rock Mechanics and Mining Sciences, 40: 443-454. Geopersia 2023, 13(1): 103-121 121 Tomašić, I., Lukić, D., Peček, N., Kršinić, A., 2011. Dynamics of capillary water absorption in natural stone. Bulletin of Engineering Geology and the Environment, 70: 673-680. Vázquez, P., Alonso, F.J., Esbert, R.M., Ordaz, J., 2010. Ornamental granites: Relationships between pwaves velocity, water capillary absorption and the crack network. Construction and Building Materials, 24: 2536-2541. Wang, P., Xu, J., Liu, S., Wang, H., Liu, S., 2016. Static and dynamic mechanical properties of sedimentary rock after freeze-thaw or thermal shock weathering. Engineering Geology, 210: 148- 157. Winkler, E.M., 1997. Physical Properties of Stone. In Stone in Architecture. pp. 32-62. Springer, Berlin, Heidelberg. Wong, L. N. Y., Zhang, Y., & Wu, Z., 2020. Rock strengthening or weakening upon heating in the mild temperature range? Engineering Geology, 272: 105619. Xu, C., Sun, Q., Pan, X., Zhang, W., Wang, Y., 2019. Variation on thermal damage rate of granite specimen with thermal cycle treatment. High Temperature Materials and Processes, 38(2019): 849- 855. Yin, T., Li, Q., Li, X., 2019. Experimental investigation on mode I fracture characteristics of granite after cyclic heating and cooling treatments. Engineering Fracture Mechanics, 222: 106740. Yu, L., Peng, H. W., Zhang, Y., Li, G. W., 2021. Mechanical test of granite with multiple water–thermal cycles. Geothermal Energy, 9(1): 1-20. Zhang, F., Zhang, Y., Yu, Y., Hu, D., Shao, J., 2020. Influence of cooling rate on thermal degradation of physical and mechanical properties of granite. International Journal of Rock Mechanics and Mining Sciences, 129: 104285. Zhang, W., Shi, Z., Wang, Z., Zhang, S. 2021. Identifying critical failure information of thermal damaged sandstone through acoustic emission signal. Journal of Geophysics and Engineering, 18(4): 558-566. Zhang, W., Sun, Q., Hao, S., Geng, J., Lv, C., 2016. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Applied Thermal Engineering, 98: 1297–1304. Zhao, G., Hu, Y., Jin, P., 2020. Exploratory Experimental Study on the Mechanical Properties of Granite Subjected to Cyclic Temperature and Uniaxial Stress. Energies, 13(8): 2061. Zhu, S., Zhang, W., Sun, Q., Deng, S., Geng, J., Li, C., 2017. Thermally induced variation of primary wave velocity in granite from Yantai: experimental and modeling results. International Journal of Thermal Sciences, 114: 320-326. | ||
آمار تعداد مشاهده مقاله: 254 تعداد دریافت فایل اصل مقاله: 630 |