تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,710 |
تعداد دریافت فایل اصل مقاله | 97,217,441 |
Mineral chemistry and petrology of magmatic rocks from NW Takestan (NW Iran) | ||
Geopersia | ||
مقاله 8، دوره 13، شماره 1 - شماره پیاپی 22287825، فروردین 2023، صفحه 123-143 اصل مقاله (4.34 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/geope.2023.350569.648686 | ||
نویسندگان | ||
Ali asghar Sepahi* 1، 2؛ Batool Nemati1؛ Abbas Asiabanha3؛ Mirmohammad Miri4؛ Deniz Kiymet5 | ||
1Department of Geology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran. | ||
2Department of Geology, Faculty of Science, Ferdowsi Univesity of Mashshad, Mashhad, Iran | ||
3Department of Geology, Faculty of Science, Imam Khomeini International University, Qazvin, Iran. | ||
4Department of Geology, Faculty of Earth science, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | ||
5Department of Geological Engineering, Earth Sciences Application and Research Center (YEBIM), Faculty of Engineering, Ankara University, Turkey | ||
چکیده | ||
In northwest of the Takestan area (NW Iran), as a part of the western Alborz mountain belt, various plutonic (monzodiorite, quartz monzonite, granite, and alkali granite), volcanic (andesite, basalt, basaltic andesite, rhyolite, and dacite) and pyroclastic rocks (tuff, agglomerate, and ignimbrite) are hosted of Eocene age. Electron probe micro analyzing (EPMA) on clinopyroxene, orthopyroxene, biotite, and amphibole show that they are diopside to augite (Mg# = 0.6-0.8), enstatite (Mg# = 0.63-0.68), annite to phlogopite (Fe# = 0.15 - 0.3) and pargasite (Mg# = 0.6 - 0.8), respectively. The plagioclases havedifferent compositions with normal chemical zoning from labradorite (in the basalts, An% = 40 - 60) to andesine (in the monzodiorite, An% = 27 - 50) to oligoclase (in the other rocks, An% = 13 - 38). All minerals are primary magmatic except for the alkali granite biotites that have low Ti contents which indicate that they formed by re-equilibrium with a hydrothermal fluid. Chemical compositions of the clinopyroxene, biotite, and amphibole reveal that they crystallized from calc-alkaline magmas formed by subduction of Neo-Tethys oceanic crust beneath the Iran micro-plate. Geothermometry calculations based on the mineral compositions indicate ca. 880 to 980 °C for the basalts, 800 to 850 °C for the andesite and the dacite, 750 to 820 °C for the monzodiorites and the quartz monzonite, and 520 to 670 °C for the alkali granite. High Al contents of the plagioclases from the quartz monzonite and monzodiorite as well as Fe+3 contents of the biotites from the alkali granite show that they formed from oxidized magmas that were suitable for Cu porphyry systems. Propylitic and argillic alteration zones in the area confirm it. | ||
کلیدواژهها | ||
Mineral Chemistry؛ Alkaligranite؛ Dacite؛ Basalt؛ Andesite؛ Neo-Tethys؛ Alborz Mountain Belt؛ Takestan؛ Eocene | ||
عنوان مقاله [English] | ||
- | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Abdel-Rahman, A., 1994. Nature of Biotite from Alkaline, Calc-alkaline, and Peraluminous Magmas. Journal of Petrology, 35: 525-41 Afshooni, S.Z., Mirnejad, H., Esmaeily, D., Haroni, H.A., 2013. Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore Geology Reviews, 54: 214-232 Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., Wortel, R., 2011. Zagros orogeny: A subduction-dominated process. Geology Magazine, 148: 692 - 725 Aghazadeh, M., Castro, A., Badrzadeh, Z., Vogt, K., 2011. Post-collisional polycyclic plutonism from 140 Sepahi et al. the Zagros hinterland: The Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine, 148: 980-1008 Alai Mahabadi, S. Fanoudi, M., 1992. Geological Map of Takestan Quadrangle. Geological Survey of Iran. Scale 1:100000. Amidi, S.M., Michel, R., 1985. Cenozoic magmatism of the Surk area (central Iran) stratigraphy, petrography, geochemistry and their geodynamic implications. Geologie Alpine, 61: 1-16 Amidi, S.M., Emami, M.H., Michel, R., 1984. Alkali character of Eocene volcanism in the middle part of central Iran and its geodynamic situation. Geologische Rundschau, 73: 917-932 Anderson, J.L., Smith, D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80: 549-59 Annells, R.N., Arthurton, R.S., Bazely, R.A., Davis, R.G., 1975. Explanatory text of the Qazvin and Rasht quadrangles map. Geological Survey of Iran. Scale 1:250000. Ashrafi, N., Ahmad Jahangiri, A., Hasebec, N., Eby, G.N., 2019. Petrology, geochemistry and geodynamic setting of Eocene-Oligocene alkaline intrusions from the Alborz-Azerbaijan magmatic belt, NW Iran. Geochemistry, 78: 432-461 Asiabanha, A., Foden, J., 2012. Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos, 148: 98-111 Asiabanha, A., Bardintzeff, J.M., Kananian, A., Rahimi, G., 2012. Post-Eocene volcanics of the Abazar district, Qazvin, Iran: Mineralogical and geochemical evidence for a complex magmatic evolution. Journal of Asian Earth Sciences, 45: 79-94 Asiabanha, A., Ghasemi, H., Meshkin, M., 2009. Paleogene continental-arc type volcanism in North Qazvin, North Iran: facies analysis and geochemistry. Neues Jahrbuch für Mineralogie Abhandlungen, 186: 201-214 Avanzinelli, R., Bindi, L., Menchetti, S., Conticelli, S., 2004. Crystallization and genesis of peralkaline magmas from Pantelleria Volcano, Italy: an integrated petrological and crystal-chemical study. Lithos, 73: 41-69 Barrière, M., Cotton, J., 1979. Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contributions to Mineralogy and Petrology 70, 183-192 Beccaluva, L., Maccciotta, G., Piccardo, G.B., Zeda, O., 1989. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chemical Geology, 77: 165-182 Berberian, F., Berberian, M., 1981. Tectono-plutonic episodes in Iran. In: Gupta, H.K., Delany, F.M. (Eds.), Zagros Hindukush: Himalaya Geodynamic Evolution. American Geophysical Union, 5-32 Best, M.G., Christiansen, E.H., 2001. Igneous Petrology. Oxford Blackwell Science, 458 pp. Bindi, L., Cellai, D., Melluso, L., Conticelli, S., Morra, V., Menchetti, S., 1999. Crystal chemistry of clinopyroxene from alkaline undersaturated rocks of the Monte Vulture Volcano, Italy. Lithos 46: 259-274 Blundy, J.D., Holland, T.J.B., 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrolology 104: 208-24 Boomeri, M., Nakashima, K., Lentz, D.R., 2010. The Sarcheshmeh porphyry copper deposit, Kerman, Iran: a mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes. Ore Geology Reviews 38: 367-381 Castro, A., Aghazadeh, M., Badrzadeh, Z., Chichorro, M., 2013. Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos 180-181: 109-127 Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., Iizuka, Y., 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162: 70-87 Danyushevsky, L.V., Sobolev, A.V., 1996. Ferric-ferrous ratio and oxygen fugacity calculations for primitive mantle-derived melts: calibration of an empirical technique. Mineralogy and Petrology 57: 229-2 Deer, W.A. Howie, R.A., Zussman, J., 1991. An introduction to the rock forming minerals. Longman Scientific Technical. 528 pp Droop, G.T.R., 1987. A general equation for estimating Fe+3 concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineral Magazine 51: 431-435 Foudazi, M., Sheikhi Karizaki, H., Gholipuor, M., 2015. Petrology and geochemistry of granitoid Geopersia 2023, 13(1): 123-143 141 massifs in North West of Takstan. Scientific Quarterly of Earth Sciences 24(95), 21-28 (in Persian with English abstract) France, L., Koepke, J., Ildefonse, B., Cichy, S. B., Deschamps, F., 2010. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contributions to Mineralogy and Petrology 160: 683 -704. Ghassemi, A., Dehnavi, R., Sarikhani, D., 2009. Geochemical and petrological characteristics of volcanic rocks of zajkan, north-west of Iran. Journal of the Indian Academy of Geoscience 52: 19-24 Guest, B., Horton, B.K., Axen, G.J., Hassanzadeh, J., McIntosh, W.C., 2007. Middle to late Cenozoic basin evolution in the western Alborz Mountains: Implications for the onset of collisional deformation in northern Iran. Tectonics 11: 1-26 Hammarstrom, J.M. Zen, E., 1986. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist 71: 1297-313 Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., Welch, M.D., 2012. Nomenclature of the amphibole supergroup. American Mineralogist 97: 2031-2048 Holland, T., Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphiboleplagioclase thermometry. Contributions to Mineralogy and Petrology 116: 433-47 Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H., Sisson, V.B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist 72: 231-9 Johnson, M.C., Rutherford, M.J., 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with applicable to Long Valley Caldera (California) volcanic rocks. Geology 17: 837-41 Kazmin, V.G., Sbortshikov, I.M., Ricou, L.E., Zonenshain, L.P., Boulin, J., Knipper, A.L., 1986. Volcanic belts as markers of the Mesozoic-Cenozoic active margin of Eurasia. Tectonophysics 123: 123-152 Klein, C., Hurlbut, C. S., 1985. Manual of mineralogy. John Wiley and Sons, 596 pp. Le Bas, M.J., 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science 260: 267-288 Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Guo, Y., 1997. Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist 82: 1019-1037 Leterrier, J. Maury, R.C. Thonon, P. Girard, D., Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science. Letters 59: 139-154 Li, X., Chi, G., Zhou, Y., Deng, T., Zhang, J., 2017. Oxygen fugacity of Yanshanian granites in South China and implications for metallogeny. Ore Geology Reviews 88: 690-701 Madanipour, S., Ehlers, T.A., Yassaghi, A., Rezaeian, M., Enkelmann, E., Bahroudi, A., 2013. Synchronous deformation on the orogenic plateau margins, insights from the Arabia-Eurasia collision. Tectonophysics 608: 440-451 Manoli, S., Molin, G., 1988. Crystallographic procedures in the study of experimental rocks: X-ray singlecrystal structure refinement of clinopyroxene from Lunar 74275 high-pressure experimental basalt. Mineralogy and petrology 39: 187-200 Mohajjel, M., Fergusson, C., 2014. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review 56: 263-287 Moin-Vaziri, H., 2004. An introduction to magmatism in Iran. Kharazmi University publication. 440 pp. (in Persian). Molina, J., Scarrow, J., Montero, P.G., Bea, F., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basicultrabasic magmatism of central Iberia. Contribution to Mineralogy and Petrology 158: 69-98 Moromito, N., Fabrices J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifer, F.A., Zussman, J., Akoi, K., Gottardi, G., 1988. Nomeclature of pyroxenes. Mineralogical Magazine 52: 535-550 Nabatian, G., Jiang, S., Honarmand, M., Neubauer, F., 2015. Zircon U-Pb ages, geochemical and Sr- Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran. Lithos 244: 43-58 142 Sepahi et al. Nachit, H., Abderrahmane, I., El Hassan, A., Mohcine, B.O., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Geoscience 337: 1415-1420 Nisbet, E.G., Pearce, J.A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63: 149-160 Omrani, H., Michaeli, R., Moazzen, M., 2013. Geochemistry and petrogenesis of the Gasht peraluminous granite, western Alborz Mountains, Iran. Neues Jahrbuch für Geologie und Paläontologie, 268: 175-189 Pazirandeh, M., 1973. Distribution of volcanic rocks in Iran and a preliminary discussion of their relationship to tectonics. Bulletin Volcanologique, 37: 573-585 Putirka, K.D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogical Society of American, 69: 61-120 Rezaei, M., Zarasvandi, A., 2022. Combined Feldspar-Destructive Processes and Hypogene Sulfide Mineralization in the Porphyry Copper Systems: Potentials for Geochemical Signals of Ore Discovering. Iranian Journal of Science and Technology 46: 1413-1424 Richards, J.P., Boyce, A.J., Pringle, M.S., 2001. Geological evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96: 271-305 Richards, J.P., 2016. Clues to hidden copper deposits. Nature Geoscience 9: 195-196. Ridolfi, F., Renzulli, A., Puerini, M., 2009. Stability and chemical equilibrium of amphibole in calcalkaline magmas: an overview, new thermobarometric formulations and application to subductionrelated volcanoes. Contributions to Mineralogy and Petrology 160: 45-66 Ridolfi, F., Renzulli A., 2012. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric emprical equations valid up to 1130 C and 2.2 Gpa. Mineralogy and Petrology, 163: 877-895 Rutter, M.J., Van der Laan S.R., Wyllie P.J., 1989. Experimental data for a proposed empirical igneous geobarometer: Aluminium in hornblende at 10 kbar pressure. Geology, 17: 897-900 Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110: 304-10 Schumacher, J.C., 2007. Metamorphic amphiboles: composition and coexistence. In: Hawthorne, F.C., Oberti, R., Della Ventura, G., Mottana, A. (Eds.), Amphiboles: crystal chemistry occurrence and health issues, reviews in mineralogy and geochemistry (67). Mineralogical Society of America, Washington, D.C, pp. 359-416 Selby, D., Nesbitt, B.E., 2000. Chemical composition of biotite from the Casino porphyry Cu-Au-Mo mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry. Chemical Geology, 171: 77-93 Shahabpour, J., 2007. Island-arc affinity of the Central Iranian Volcanic Belt. Journal of Asian Earth Sciences 30: 652-665 Siahcheshm, K., Calagari, A.A., Abedini, A., Lentz, D.R. 2012. Halogen signatures of biotites from the Maher-Abad porphyry copper deposit, Iran: characterization of volatiles in syn-to post-magmatic hydrothermal fuids. International Geology Reviews, 54: 1353-136 Stöcklin, J., 1974. Northern Iran: Alborz mountains. In: Spencer, A. (Ed.), Mesozoic-Cenozoic orogenic belts: data for orogenic studies. Geological Society Special Publication, pp. 213-234 Takin, M., 1972. Iranian geology and continental drift in the Middle East. Nature, 235: 147-150 Tang, P., Chen, Y., Tang, J., Wang, Y., Zheng, W., Leng, Q., Lin, B., Wu, E., 2019. Advances in research of mineral chemistry of magmatic and hydrothermal biotites. Acta Geologica Sinica, 93: 1947-1966 Van Lichtervelde, M., Grégoire, M., Linnen, R.L., Béziat, D., Salvi, S., 2008. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contribution to Mineralogy and Petrology, 155: 791-806 Verdel, C.S., Wernicke, B.P., Hassanzadeh, J., Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics, 30: 1-20 Vernon, R.H., 1991. Interpretation of Microstructures of Microgranitoid Enclaves. In: Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology 13. Elsevier, 277-292 Williamson, B.J., Herrington, R. J., Morris, A., 2016. Porphyry copper enrichment linked to excess aluminium in plagioclase. Nature Geoscience, 9: 237-241 Geopersia 2023, 13(1): 123-143 143 Williamson, B.J., Hodgkinson, M., Imai, A., Takahashi, R., Armstrong, R.N., Herrington, R.J., 2018. Testing the Plagioclase Discriminator on the GEOROC Database to Identify Porphyry-Fertile Magmatic Systems in Japan. Resource Geology, 68(2): 138-143 Wones, D.R., Eugster, H.P., 1965. Stability of biotite: experiment, theory, and application. American Mineralogist, 50: 1228-1272 Yousefi, M., Omran, N.R., Lotfi, M., Bazoobandi, M.H., 2017. Copper and Gold Mineralization Features in Deh Bala Region-South of Takestan. Open Journal of Geology, 7: 1022-1046 Zanchi, A., Berra, F., Mattei, M., Ghassemi, M., Sabouri, J., 2006. Inversion tectonics in central Alborz, Iran. Journal of Structural Geology, 28: 2023-2037 Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S., Saed, M., Lentz, D. R., 2018. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geochimica et cosmochimica acta, 223: 36-59 Zhu, Y., Ogasawara, Y., 2004. Clinopyroxene phenocrysts (with green salite cores) in trachybasalts: implications for two magma chambers under the Kokchetav UHP massif, North Kazakhstan, Journal of Asian Earth Sciences, 22: 517-527 | ||
آمار تعداد مشاهده مقاله: 384 تعداد دریافت فایل اصل مقاله: 1,025 |