تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,241 |
تعداد دریافت فایل اصل مقاله | 97,232,616 |
پیشبینی شاخص فرابنفش (UVI) با استفاده از مدل TUV روی ایران | ||
فیزیک زمین و فضا | ||
مقاله 12، دوره 49، شماره 1، خرداد 1402، صفحه 213-227 اصل مقاله (1.64 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2023.341973.1007420 | ||
نویسندگان | ||
مهدی رهنما* 1؛ ساویز صحت کاشانی2؛ عاطفه محمدی3؛ راضیه پهلوان4 | ||
1نویسنده مسئول، پژوهشگاه هواشناسی و علوم جو، تهران، ایران. رایانامه: m-rahnama@irimo.ir | ||
2پژوهشگاه هواشناسی و علوم جو، تهران، ایران. رایانامه: savizsehat@yahoo.com | ||
3پژوهشگاه هواشناسی و علوم جو، تهران، ایران. رایانامه: mohamadi.atefeh@yahoo.com | ||
4پژوهشگاه هواشناسی و علوم جو، تهران، ایران. رایانامه: pahlavan1977@yahoo.com | ||
چکیده | ||
در این پژوهش از مدل فرابنفش قابل مشاهده وردسپهری TUV (Tropospheric Ultraviolet-Visible) برای پیشبینی شاخص پرتو فرابنفش استفاده شد. این مدل برای پیشبینی OMI (Ozone Monitoring Instrument) به دادههای ازن، سپیدایی و عمق نوری ذرات معلق نیاز دارد. برای مقادیر ستون ازن و سپیدایی از دادههای ازن سامانه پیشبینی جهانی GFS (Global Forecast System) و AOD (Aerosol Optical Depth) از دادههای مدل WACCM (Whole Atmospheric Community Climate Model) استفاده شد. 612 مورد مطالعاتی در کل سال 2020 از هر یک از 12 ماه سال از نقاط مختلف کشور انتخاب شد. دادههای GFS، WACCM و OMI برای تاریخهای ذکر شده استخراج و در نقاط مورد نظر درونیابی شدند. سپس مقادیر درونیابی شده به همراه طول، عرض و ارتفاع نقاط بهعنوان ورودی به مدل TUV داده شدند و مقدار UVI (Ultraviolet Index) پیشبینی شد. به دلیل عدم دسترسی به مقدار واقعی UVI در کشور، داده OMI بهعنوان داده مشاهداتی برای مقایسه با مقادیر پیشبینی مورد استفاده قرار گرفت. از سنجههای متداول آماری RMSE (Root Mean Squared Error)، MAE (Mean Absolute Error)، ME (Mean Error) و ضریب همبستگی پیرسون برای درستیسنجی مقدار پیشبینی با داده مشاهداتی استفاده شد. نتایج نشان داد که مقدار خطا با مقدار عمق نوری ذرات رابطه دارد؛ هر چه عمق نوری ذرات معلق بیشتر باشد، خطا نیز بیشتر است. نمودار ضریب همبستگی نیز نشان داد که بین مقادیر پیشبینی و مشاهده همبستگی بالایی وجود دارد. این تحقیق اولین پژوهش در زمینه پیشبینی شاخص پرتو فرابنفش در کشور میباشد که نتایج رضایت بخشی به همراه داشته است. | ||
کلیدواژهها | ||
مدل TUV؛ شاخص پرتو فرابنفش؛ GFS؛ WACCM؛ سنجنده OMI؛ AOD | ||
عنوان مقاله [English] | ||
Prediction of UV Index (UVI) using TUV model over Iran | ||
نویسندگان [English] | ||
Mehdi Rahnama1؛ Saviz Sehat Kashani2؛ َAtefeh Mohammadi3؛ Razieh Pahlavan4 | ||
1Corresponding Author, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran. E-mail: m-rahnama@irimo.ir | ||
2Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran. E-mail: savizsehat@yahoo.com | ||
3Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran. E-mail: mohamadi.atefeh@yahoo.com | ||
4Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran. E-mail: pahlavan1977@yahoo.com | ||
چکیده [English] | ||
Ultraviolet radiation is defined as electromagnetic radiation with wavelengths in the range of 200-400 nm and is divided into three different bands. UVC is related to the wavelength from 200 to 280 nm, while UVB is related to the wavelength ranging from 280 to 315 nm and UVA is related to the wavelength from 315 nm to the visible level (400 nm). Ultraviolet radiation has beneficial effects such as making vitamin D and disinfecting effects. On the other hand, it causes harm such as burns and skin cancer, and damage to the eyes and immune system. Predicting the amount of UV radiation based on the UV index can be of great help to people's health. In this study, the tropospheric ultraviolet-visible (TUV) model was used to predict the UVI index. This model requires ozone, whiteness, and Aerosol Optical Depth (AOD) to forecast UVI. WACCM model data was used for ozone and whiteness column values from the ozone data of the GFS and AOD global forecasting systems. 612 case studies in the whole year of 2020 were selected from each of the 12 months of the year from different parts of the country. GFS, WACCM, and OMI data were extracted for the mentioned dates and interpolated at the desired points. Because OMI data is available locally at noon everywhere, case studies have been selected for noon. Then the interpolated values along with the length, width, and height of the points were given as input to the TUV model, and the UVI value was predicted. Due to the lack of access to the actual value of UVI in the country, OMI data was assumed as observational data and used to compare with the predicted value. Conventional statistical measures ME, MAE, RMSE, and Pearson correlation coefficient were used to validate the prediction value with observational data. The results showed that in January, February, April, November, and December, which are the coldest months of the year and the day length is shorter and the sun is less intense, so the error rate is lower than in other months (warm months of the year). However, in general, the forecast is very accurate. So that in all selected study cases, the values of ME, MAE, RMSE, and R are 0.16, 0.85, 1.13, and 0.93, respectively, which indicates the high accuracy of the forecast. The results also showed that the forecast error has a linear relationship with the AOD value. Thus, the higher the AOD value, the more negative the forecast error and underestimated forecast value. In the warmer months of the year, the length of the day is longer and the intensity of the sun's radiation is higher, resulting in more errors. The amount of error is also related to the amount of light depth of the particles; the greater the AOD, the greater the error. The correlation coefficient diagram also showed that there is a high correlation between the forecast and observation values. This research is the first research in the field of forecasting the UV index in the country and has had satisfactory results. | ||
کلیدواژهها [English] | ||
TUV model, UV index, GFS, WACCM, OMI spectrometer, AOD | ||
مراجع | ||
رستم پور، ن.، الماسی، ت.، رستم پور، م.، بیات، ح. و کریمی، س. (1391). بررسی میزان شدت پرتوهای فرابنفش خورشیدی نوع A در شهر همدان. مجله پزشکی بالینی ابن سینا، 19(6)، 69-74.
Ahmad, S.P., Levelt, P. F., Bhartia, P. K., Hilsenrath, E., Leppelmeierd, G. W., & Johnson, J. E. (2003). Atmospheric products from the ozone monitoring instrument (OMI). In Proc. SPIE, Earth Observing Systems VIII, 5151, 619–630. Antón, M., Cachorro, V., Vilaplana, J., Toledano, C., Krotkov, N., Arola, A., Serrano, A., & de la Morena, V. A. (2010). Comparison of UV irradiances from Aura / Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) – Part 1: Analysis of parameter influence. Atmos. Chem. Phys. Discuss., 10(13) 6797-6827. Bais, A., Tourpali, K., Kazantzidis, A., Akiyoshi, H., Bekki, S., Braesicke, P., Chipperfield, M.P., Dameris, M., Eyring, V., Garny, H., Iachetti, D., Jöckel, P., Kubin, A., Langematz, U., Mancini, E., Michou, M., Morgenstern, O., Nakamura, T., Newman, P. A., Pitari, G., Plummer, D. A., Rozanov, E., Shepherd, T. G., Shibata, K., Tian, W., & Yamashita, Y. (2011). Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects. Atmospheric Chemistry and Physics, 11, 7533–7545. Brogniez, C., Auriol, F., Deroo, C., Arola, A., Kujanpää, J., Sauvage, B., Kalakoski, N., Pitkänen, M. R. A., Catalfamo, M., Metzger, J. M., Tournois, G., & Da Conceicao, P. (2016). Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time. Atmospheric Chemistry and Physics, European Geosciences Union, 16, 15049-15074. Buchard, V., Brogniez, C., Auriol, F., Bonnel, B., Lenoble, J., Tanskanen, A., Bojkov, B., & Veefkind, P. (2008). Comparison of OMI ozone and UV irradiance data with ground-based measurements at two French sites. Atmospheric Chemistry and Physics Discussions, 8 (2), 4309-4351. Butchart, N. (2014). The Brewer-Dobson circulation. Reviews of Geophysics, 52, 157–184. Diffey, B.L. (1991). Solar ultraviolet radiation effects on biological systems. Physics in Medicine & Biology, 36, 299–328. https://doi.org/10.1088/0031-9155/36/3/001. Dobson, G. (1956). Origin and distribution of the polyatomic molecules in the atmosphere. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 236, 187–193. Erickson D. J., Sulzberger, B., Zepp, R.G., & Austin, A.T. (2015). Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks, Photochem. Photobiol. Sci, 14, 127–148. Garcia, R. R., Smith, A. K., Kinnison, D. E., Camara, A., & Murphy, D. (2017). Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results. J. Atmos. Sci., 74, 275-291, doi:10.1175/JAS-D-16-0104.1. Garcia, R. R., Marsh, D., Kinnison, D. E., Boville, B., & Sassi, F. (2007). Simulations of secular trends in the middle atmosphere, 1950-2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485. Hader, D. P., Kumar, H. D., Smith, R. C., & Worrest, R. C. (2007). Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci, 6, 267–285, 10.1039/B700020K. Hegglin, M. I., & Shepherd, T. G. (2009). Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nature Geoscience, 2, 687–691, 10.1038/ngeo604. Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., & Pfister, L. (1995). Stratosphere-troposphere exchange. Reviews of Geophysics, 33, 403–439, 10.1029/95RG02097, 10.1029/95RG02097. Hovila, J., Arola, A., & Tamminen, J. (2013). OMI/Aura Surface UVB Irradiance and Erythemal Dose Daily L3 Global Gridded 1.0 degree x 1.0 degree V3, NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC). Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Sassi, F., Boville, B. A., Marsh, D., Harvey, L., Randall, C., Randel, W., Lamarque, J.-F., Emmons, L. K., Hess, P., Orlando, J., Tyndall, J., & Pan, L. (2007). Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879, 2007. Krzyścin, J.W., Guzikowski, J., Pietruczuk, A., & Sobolewski, P. (2020). Improvement of the 24 hr forecast of surface UV radiation using an ensemble approach. Meteorol Appl. 27, e1865. https://doi.org/10.1002/met.1865. Lamy, K., Josse, B., Portafaix, T., Bencherif, H., Godin-Beekmann, S., Brogniez, C., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P., Currie, R., Di Genova, G., Garcia, R. R., Deushi, M., Dhomse, S., Duncan, B. N., Hegglin, M. I., Horowitz, L. W., Jöckel, P., Kinnison, D., Lamarque, J. F., Lin, M. Y., Mancini, E., Marchand, M., Marécal, V., Michou, M., Morgenstern, O., O'Connor, F. M., Nagashima, T., Oman, L. D., Pitari, G., Plummer, D., Pyle, J. A., Revell, L. E., Rozanov, E., Saint-Martin, D., Scinocca, J. F., Stenke, A., Strahan, S. E., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K., & Zeng, G. (2017). Ultraviolet Radiation evolution during the 21st century. CCMI 2017. Chemistry-Climate Model Initiative Science Workshop, Jun 2017, Toulouse, France. ffhal-01648231f. Lamy, K., Portafaix, T., Josse, B., Brogniez, C., Godin-Beekmann, S., Bencherif, H., Revell, L., Akiyoshi, H., Bekki, S., Hegglin, M. I., Jockel, P., Kirner, O., Liley, B., Marecal, V., Morgenstern, O., Stenke, A., Zeng, G., Abraham, N. L., Archibald, A. T., Butchart, N., Chipperfield, M. P., Di Genova, G., Deushi, M., Dhomse, S. S., Hu, R.-M., Kinnison, D., Kotkamp, M., McKenzie, R., Michou, M., O Connor, F. M., Oman, L. D., Pitari, G., Plummer, D. A., Pyle, J. A., Rozanov, E., Saint-Martin, D., Sudo, K., Tanaka, T. Y., Visioni, D., & Yoshida, K. (2019). Ultraviolet Radiation modelling using output from the Chemistry Climate Model Initiative. Atmospheric Chemistry and Physics Discussions, 19(15): 10087–10110. Lucas, R., McMichael, T., Smith, W., & Armstrong, B. (2006). Solar ultraviolet radiation: global burden of disease fromsolar ultraviolet radiation. In: Prüss-Üstün, A., Zeeb, H., Mathers, C. & Repacholi, M. (Eds.) World Health Organization Public Health and the Environment Geneva 2006. Environmental Burden of Disease Series 13. Geneva, Switzerland: World Health Organization, p. 250 https://www.who.int/uv/health/solaruvradfull_180706.pdf. Madronich, S., & Flocke, S. (1997). Theoretical estimation of biologically effective UV radiation at the earth's surface. In: Zerefos, C. S. & Bais, A.F. (Eds.) Solar Ultraviolet Radiation: Modelling, Measurements and Effects. Berlin: Springer, 23–48. Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., & Polvani, L. M. (2013). Climate change from 1850 to 2005 simulated in CESM1 (WACCM). Journal of Climate, 26 (19), doi:10.1175/JCLI-D-12-00558.1. McKinlay, A.F., & Diffey, B.L. (1987). A reference action spectrum for ultraviolet induced erythema in human skin. CIE Journal, 6, 17–22. Oh, S.T., Ga, D.H., & Lim, J.H. (2021). Mobile Deep Learning System that Calculates UVI Using Illuminance Value of User’s Location. Sensors, 21, 1227. https://doi.org/10.3390/s21041227. Podrascanin, Z., Atlagic, M., Mijatovic, Z., & Sremac, A.F. (2018). Uv Index Forecasting in Vojvodina Region. RAD Conf. Proc. 3, 187–190. Prasad, S. S., Deo, R. C., Downs, N., Igoe, D., Parisi A. V., & Soar, J. (2022). Cloud Affected Solar UV Prediction With Three-Phase Wavelet Hybrid Convolutional Long Short-Term Memory Network Multi-Step Forecast System. in IEEE Access, 10, 24704-24720, 2022, doi: 10.1109/ACCESS.2022.3153475. Roshan, D.R., Koc, M., Abdallah, A., Martin-Pomares, L., Isaifan, R., & Fountoukis, C. (2020). UV Index Forecasting under the Influence of Desert Dust: Evaluation against Surface and Satellite-Retrieved Data. Atmosphere, 11, 96. https://doi.org/10.3390/atmos11010096. Smith, R. C., & Cullen, J. J. (1995). Effects of UV radiation on phytoplankton. Reviews of Geophysics, 33, 1211–1223, 10.1029/95RG00801, 10.1029/95RG00801. Taipe, C.W., Mendoza, E.G., & Flores, H.H. (2021). Validation of ultraviolet index data from the Ozone Monitoring Instrument (OMI) based on measurements from meteorological stations in the city of Puno. Journal of Physics: Conference Series. doi:10.1088/1742-6596/1841/1/012005. Tanskanen, A., Lindfors, A., Maatta, A., Krotkov, N., Herman, J., Kaurola, J., Koskela, T., Lakkala, K., Fioletov, V., Bernhard, J., McHenzie, R., Kondo, Y., O’Neill, M., Slaper, H., den Outer, P., Bais, A.F., & Tamminen, J. (2007). Validation of daily erythemal doses from OMI with ground-based UV measurement data. J. Geophys. Res., 112, D24S44, doi:10.1029/2007JD008830. WMO (World Meteorological Organization. (1997). Report of the WMO-WHO Meeting of Experts on Standardization of UV Indices and their Dissemination to the Public, WMO/GAW Report No. 127, Geneva. World Health Organization, World Meteorological Organization, United Nations Environment Programme & International Commission on Non-Ionizing Radiation Protection. (2002). Global solar UV index: a practical guide. World Health Organization. https://apps.who.int/iris/handle/10665/42459. Young, A.R. (2006). Acute effects of UVR on human eyes and skin. Progress in Biophysics and Molecular Biology, 92, 80–85. https://doi.org/10.1016/j.pbiomolbio.2006.02.005. Zepp, R., Erickson, D., Paul, Nigel., & Sulzberger, B. (2007). Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology, 6, 286-300. 10.1039/b700021a. | ||
آمار تعداد مشاهده مقاله: 943 تعداد دریافت فایل اصل مقاله: 511 |