تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,503 |
تعداد مشاهده مقاله | 124,121,289 |
تعداد دریافت فایل اصل مقاله | 97,228,087 |
ارزیابی مدل سنجش از دور TSEB برای جداسازی تبخیر-تعرق ذرت در مقیاس مزرعه تحت کشت آبیاری قطرهای | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 12، اسفند 1401، صفحه 2885-2903 اصل مقاله (2.25 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.351695.669403 | ||
نویسندگان | ||
مصیب مقبلی دامنه1؛ مهدی غلامی شرفخانه1؛ سیدحسین ثنایی نژاد** 1؛ مجتبی صادق2 | ||
1گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
2گروه مهندسی عمران، دانشگاه ایالتی بویزی، بویزی، آمریکا | ||
چکیده | ||
جداسازی دقیق اجزای تبخیر-تعرق یکی از شکافهای کلیدی تحقیقات در زمینه مدیریت آب در بخش کشاورزی است. شناخت این متغیر و همچنین مکانیزم جداسازی اجزای آن برای تعیین مقدار دقیق مؤلفههای معادله بیلان آب در رابطه با برنامهریزی و مدیریت منابع آب، بهینهسازی تولید محصول، طراحی سامانههای آبیاری، ارزیابی عملکرد محصول، شناسایی تنشهای گیاه و تأثیر خشکسالی و همچنین ارزیابی تأثیرات تغییراقلیم بر کارایی مصرف آب بسیار مهم است. در این پژوهش کارایی مدل دو منبعی TSEB برای جداسازی اجزای این متغیر ارزیابی شد. در همین راستا خروجیهای این مدل با خروجیهای روش استاندارد دو جزئی فائو-56 در مزرعه ذرت واقع در ایستگاه تحقیقات کشاورزی دانشگاه فردوسی مشهد، مقایسه و ارزیابی شد. برای این کار از چهار تصویر ماهواره لندست 8 در بازه کاشت تا برداشت گیاه ذرت در فصل کاشت بهار و تابستان سال 1400 استفاده شد. نتایج این مطالعه نشان داد علیرغم نزدیک بودن مقادیر کلی تبخیر-تعرق بین مدل TSEB و روش دو جزئی فائو-56 (مقدارR^2 برابر با 94/0)، بین جزئیات این پارامتر اختلاف زیاد است (مقدارR^2 برای تعرق و تبخیر به ترتیب 46/0 و 75/0)، که بر اساس مطالعات سایر پژوهشگران این اختلاف میتواند به دلیل بیش برآورد مقدار تعرق و کم برآورد مقدار تبخیر در روش دو جزئی فائو-56 باشد و در اینجا چون روش دو جزئی فائو-56 مقادیر تعرق و تبخیر را تخمین میزند و میتواند با مقداری خطا همراه باشد، نمیتوان به طور قطع گفت مدل TSEB دارای دقت کافی نیست. از طرفی مقایسه نسبت تعرق به تبخیر-تعرق در این پژوهش با نتایج سایر پژوهشگران نشان داد که خروجیهای مدل TSEB در این پژوهش (77/0) در بازه مجاز (75/0 تا 88/0) میباشد و خروجیهای قابل اعتمادی ارائه میکند. | ||
کلیدواژهها | ||
جداسازی تبخیر-تعرق؛ روش دو جزئی فائو-56؛ سنجش از دور؛ لندست 8؛ مدل دو منبعی TSEB | ||
عنوان مقاله [English] | ||
Two-Source Energy Balance Model (TSEB) Evaluation for Evapotranspiration Partitioning of Corn under Drip Irrigation in Farm Scale | ||
نویسندگان [English] | ||
Mosayeb Moqbeli ِDamane1؛ Mahdi Gholami Sharafkhane1؛ Seyed Hossein Sanaeinejad1؛ Mojtaba Sadegh2 | ||
1Department of Water Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran | ||
2Department of Civil Engineering, Boise State University, Boise, USA | ||
چکیده [English] | ||
The accurate separation of evapotranspiration components is one of the key gaps in evapotranspiration research. Knowing this variable as well as the mechanism of separating its components to determine the exact value of the components of the water balance equation in relation to planning and managing water resources, optimizing crop production, designing irrigation systems, evaluating crop performance, identifying plant stresses and the impact of drought, and also evaluating the effects of climate change is very important on the efficiency of water consumption. In this research, the efficiency of Two-Source Energy Balance (TSEB) model was evaluated to separate the components of this parameter. In this regard, the outputs of TSEB model were compared and evaluated with the outputs of the standard FAO-56 dual crop coefficient method in the corn field located in the agricultural research station of Ferdowsi University of Mashhad. For this purpose, four Landsat 8 satellite images were used between planting and harvesting corn plants in the spring and summer planting seasons of 2021. The results of this research showed that despite the closeness of two methods (TSEB and FAO-56 dual crop coefficient method with R2=0.94) in terms of total values of evapotranspiration, there is a big difference between the two methods in terms of detail components (R2=0.46 for transpiration and R2=0.75 for evaporation). This difference can be due to the overestimation of the transpiration amount and underestimation of the evaporation amount in the dual crop coefficient method, and because the FAO-56 dual crop coefficient method estimates transpiration and evaporation values and it can be associated with some error, it cannot be said for sure that the TSEB model is not accurate enough. Also, comparing the ratio of transpiration to evapotranspiration in this research (0.77) with the results of other researchers (0.75-0.88) showed that the outputs of the TSEB model are within the permissible range and provide reliable outputs. | ||
کلیدواژهها [English] | ||
Evapotranspiration Partitioning, FAO-56 dual crop coefficient, Landsat 8, Remote Sensing, TSEB | ||
مراجع | ||
Agam, N., Evett, S. R., Tolk, J. A., Kustas, W. P., Colaizzi, P. D., Alfieri, J. G., McKee, L. G., Copeland, K. S., Howell, T. A., & Chávez, J. L. (2012). Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area. Advances in Water Resources, 50, 20–30. https://doi.org/10.1016/j.advwatres.2012.07.010 Allen, Richard G., Pereira, Luis S., Raes, Dirk & Smith, M. (1998). FAO Irrigation and Drainage Paper Crop by. Irrigation and Drainage, 300(56), 300. http://www.kimberly.uidaho.edu/water/fao56/fao56.pdf Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., & Mecikalski, J. R. (1997). A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sensing of Environment, 60(2), 195–216. https://doi.org/10.1016/S0034-4257(96)00215-5 Bagheri, M. H., Arshad, S., Majnuni, A., & Morid, S. (2012). A comparison of single-source and two-source energy fluxes models to estimate actual evapotranspiration in Tabriz Plain. Iranian Journal of RS and GIS, 4(1), 81–96. (In Persian) Bahmanabadi, B., Kaviani, A., Daneshkar, A. P., & Nazari, R. (2019). Estimation of Actual Evapotranspiration Using Satellite Imageries and Single-Source and Two-Source Surface Energy Balance Algorithms in Qazvin Plain. Journal of Water Research in Agriculture, 32(2), 227-246. (In Persian) Blyth, E. M., & Harding, R. J. (1995). Application of aggregation models to surface heat flux from the Sahelian tiger bush. Agricultural and Forest Meteorology, 72(3–4), 213–235. https://doi.org/10.1016/0168-1923(94)02164-F Campbell, G. S., & Norman, J. M. (2000). An Introduction to Environmental Biophysics. Journal of Environmental Quality 6(4). Springer Science & Business Media. https://doi.org/10.2134/jeq1977.00472425000600040036x Choi, M., Kustas, W. P., Anderson, M. C., Allen, R. G., Li, F., & Kjaersgaard, J. H. (2009). An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, U.S.) during SMACEX. Agricultural and Forest Meteorology, 149(12), 2082–2097. https://doi.org/10.1016/j.agrformet.2009.07.002 Colaizzi, P. D., Agam, N., Tolk, J. A., Evett, S. R., Howell, T. A., Gowda, P. H., O’Shaughnessy, S. A., Kustas, W. P., & Anderson, M. C. (2014). Two-source energy balance model to calculate E, T, and ET: Comparison of priestley-taylor and penman-monteith formulations and two time scaling methods. Transactions of the ASABE, 57(2), 479–498. https://doi.org/10.13031/trans.57.10423 Diarra, A., Jarlan, L., Er-Raki, S., Le Page, M., Aouade, G., Tavernier, A., Boulet, G., Ezzahar, J., Merlin, O., & Khabba, S. (2017). Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa. Agricultural Water Management, 193, 71–88. https://doi.org/10.1016/j.agwat.2017.08.007 Er-Raki, S., Chehbouni, A., Boulet, G., & Williams, D. G. (2010). Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agricultural Water Management, 97(11), 1769–1778. https://doi.org/10.1016/j.agwat.2010.06.009 French, A. N., Jacob, F., Anderson, M. C., Kustas, W. P., Timmermans, W., Gieske, A., Su, Z., Su, H., McCabe, M. F., Li, F., Prueger, J., & Brunsell, N. (2005). Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment, 99(1–2), 55–65. https://doi.org/10.1016/j.rse.2005.05.015 Goudriaan, J. (1977). Crop micrometeorology: a simulation study (Doctoral dissertation, Wageningen University, Netherlands). Hathaway, J. C. (2016). Integration of an unmanned aircraft system and ground-based remote sensing to estimate spatially distributed crop evapotranspiration and soil water deficit throughout the vegetation soil root zone (Doctoral dissertation, Colorado State University, Fort Collins). Huntingford, C., Verhoef, A., & Stewart, J. (2000). Dual versus single source models for estimating surface temperature of African savannah. Hydrology and Earth System Sciences 4(1), pp. 185–191). https://doi.org/10.5194/hess-4-185-2000 Jiménez-Martínez, J., Skaggs, T. H., van Genuchten, M. T., & Candela, L. (2009). A root zone modelling approach to estimating groundwater recharge from irrigated areas. Journal of Hydrology, 367(1–2), 138–149. https://doi.org/10.1016/j.jhydrol.2009.01.002 Kool, D., Agam, N., Lazarovitch, N., Heitman, J. L., Sauer, T. J., & Ben-Gal, A. (2014). A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology, 184, 56–70. https://doi.org/10.1016/j.agrformet.2013.09.003 Kosari, H., Dehghanisanij, H., Mirzaei, F., & Liaghat, A. M. (2010). Evapotranspiration partitioning using the Bowen ratio energy balance method in a sub-surface drip irrigation system. Journal of Agricultural Engineering Research (Iran), 11(3), 71-86. (In Persian) Kustas, W. P., & Daughtry, C. S. T. (1990). Estimation of the soil heat flux/net radiation ratio from spectral data. Agricultural and Forest Meteorology, 49(3), 205–223. https://doi.org/10.1016/0168-1923(90)90033-3 Kustas, W. P., & Norman, J. M. (1999). Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology, 94(1), 13–29. https://doi.org/10.1016/S0168-1923(99)00005-2 Li, F., Kustas, W. P., Prueger, J. H., Neale, C. M. U., & Jackson, T. J. (2005). Utility of remote-sensing-based two-source energy balance model under low- and high-vegetation cover conditions. Journal of Hydrometeorology, 6(6), 878–891. https://doi.org/10.1175/JHM464.1 Li, X., Gentine, P., Lin, C., Zhou, S., Sun, Z., Zheng, Y., Liu, J., & Zheng, C. (2019). A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites. Agricultural and Forest Meteorology, 265(November 2018), 171–182. https://doi.org/10.1016/j.agrformet.2018.11.017 Liu, M., Shi, H., Paredes, P., Ramos, T. B., Dai, L., Feng, Z., & Pereira, L. S. (2022). Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model. Agricultural Water Management, 261(November 2021), 107362. https://doi.org/10.1016/j.agwat.2021.107362 Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A., Martens, B., Mccabe, M. F., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., & Fernández-Prieto, D. (2016). The WACMOS-ET project - Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrology and Earth System Sciences, 20(2), 803–822. https://doi.org/10.5194/hess-20-803-2016 Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., & Fernández-Prieto, D. (2016). The WACMOS-ET project - Part 2: Evaluation of global terrestrial evaporation data sets. Hydrology and Earth System Sciences, 20(2), 823–842. https://doi.org/10.5194/hess-20-823-2016 Naseri, A., Abbasi, F., & Akbari, M. (2017). Estimating agricultural water consumption by analyzing water balance. Irrigation and Drainage Structures Engineering Research, 18(68), 17-32. (In Persian) Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3–4), 263–293. https://doi.org/10.1016/0168-1923(95)02265-Y Norman, J. M., Kustas, W. P., Prueger, J. H., & Diak, G. R. (2000). Surface flux estimation using radiometric temperature: A dual-temperatare-difference method to minimize measurement errors. Water Resources Research, 36(8), 2263–2274. https://doi.org/10.1029/2000WR900033 Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 147, 4-20. https://doi.org/10.1016/j.agwat.2014.07.031 Pereira, L. S., Paredes, P., & Jovanovic, N. (2020). Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agricultural Water Management, 241(June), 106357. https://doi.org/10.1016/j.agwat.2020.106357 Rafi, Z., Merlin, O., Le Dantec, V., Khabba, S., Mordelet, P., Er-Raki, S., Amazirh, A., Olivera-Guerra, L., Ait Hssaine, B., Simonneaux, V., Ezzahar, J., & Ferrer, F. (2019). Partitioning evapotranspiration of a drip-irrigated wheat crop: Inter-comparing eddy covariance-, sap flow-, lysimeter- and FAO-based methods. Agricultural and Forest Meteorology, 265(November 2018), 310–326. https://doi.org/10.1016/j.agrformet.2018.11.031 Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10(2), 290–301. https://doi.org/10.1093/jxb/10.2.290 Ritchie, J. T. (1972). Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8(5), 1204–1213. https://doi.org/10.1029/WR008i005p01204 Sánchez, J. M., López-Urrea, R., Rubio, E., González-Piqueras, J., & Caselles, V. (2014). Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry. Agricultural water management, 137, 23-29. https://doi.org/10.1016/j.agwat.2014.02.002 Santanello, J. A., & Friedl, M. A. (2003). Diurnal covariation in soil heat flux and net radiation. Journal of Applied Meteorology, 42(6), 851–862. https://doi.org/10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO;2 Santos, F. L. (2018). Assessing olive evapotranspiration partitioning from soil water balance and radiometric soil and canopy temperatures. Agronomy, 8(4), 43. https://doi.org/10.3390/agronomy8040043 Schlesinger, W. H., & Jasechko, S. (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189–190, 115–117. https://doi.org/10.1016/j.agrformet.2014.01.011 Song, L., Liu, S., Zhang, X., Zhou, J., & Li, M. (2015). Estimating and validating soil evaporation and crop transpiration during the HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 334–338. https://doi.org/10.1109/LGRS.2014.2339360 Tanner, C. B., & Jury, W. A. (1976). Estimating Evaporation and Transpiration from a Row Crop during Incomplete Cover 1 . Agronomy Journal, 68(2), 239–243. https://doi.org/10.2134/agronj1976.00021962006800020007x Timmermans, W. J., Kustas, W. P., Anderson, M. C., & French, A. N. (2007). An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes. Remote Sensing of Environment, 108(4), 369–384. https://doi.org/10.1016/j.rse.2006.11.028 Van Halsema, G. E., & Vincent, L. (2012). Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism. Agricultural Water Management, 108, 9–15. https://doi.org/10.1016/j.agwat.2011.05.016 Wang, K., & Dickinson, R. E. (2012). A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 50(RG2005), 1–54. https://doi.org/10.1029/2011RG000373.1.INTRODUCTION Wei, Z., Paredes, P., Liu, Y., Chi, W. W., & Pereira, L. S. (2015). Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agricultural water management, 147, 43-53. https://doi.org/10.1016/j.agwat.2014.05.004 Wilcox, B. P., Seyfried, M. S., & Breshears, D. D. (2003). The water balance on rangelands. Encyclopaedia of Water Science, 2, 791–794. https://doi.org/10.1081/E-EWS Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., Er-Raki, S., Boulet, G., De Bruin, H. A. R., Chehbouni, A., Hartogensis, O. K., & Timouk, F. (2004). Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125(3–4), 241–258. https://doi.org/10.1016/j.agrformet.2004.04.008 Wolff, W., Francisco, J. P., Flumignan, D. L., Marin, F. R., & Folegatti, M. V. (2022). Optimized algorithm for evapotranspiration retrieval via remote sensing. Agricultural Water Management, 262(May 2021). https://doi.org/10.1016/j.agwat.2021.107390 Yang, Y., Qiu, J., Zhang, R., Huang, S., Chen, S., Wang, H., Luo, J., & Fan, Y. (2018). Intercomparison of three two-source energy balance models for partitioning evaporation and transpiration in semiarid climates. Remote Sensing, 10(7). https://doi.org/10.3390/rs10071149 Zhou, S., Yu, B., Zhang, Y., Huang, Y., & Wang, G. (2016). Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resources Research, 52(2), 1160–1175. https://doi.org/10.1111/j.1752-1688.1969.tb04897.x | ||
آمار تعداد مشاهده مقاله: 283 تعداد دریافت فایل اصل مقاله: 256 |