تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,033 |
تعداد مشاهده مقاله | 125,502,608 |
تعداد دریافت فایل اصل مقاله | 98,766,775 |
تحلیل پهنهای روند تغییرات و آشکارسازی نقطهی شکستِ سری زمانی تبخیر-تعرق ماهانه در مازندران | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 1، فروردین 1402، صفحه 15-31 اصل مقاله (2.23 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.346636.669332 | ||
نویسندگان | ||
رضا نوروز ولاشدی* 1؛ صدیقه برارخانپور احمدی2 | ||
1استادیار هواشناسی کشاورزی، گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
2دانشجوی دکتری هواشناسی کشاورزی، گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. | ||
چکیده | ||
تبخیر-تعرق مرجع بهعنوان شاخص مهمی از تقاضای تبخیر نیوار، یک عامل مهم برای مطالعات اقلیمی و هیدرولوژیکی است. با توجه به وقوع تغییر اقلیم و ایجاد نوسانات زیاد در میزان بارش و وقوع خشکسالیهای ضعیف تا شدید، مطالعه در زمینهی بررسی تغییرات تبخیر-تعرق حائز اهمیت است. در این پژوهش، بهمنظور بررسی تغییرات زمانی-مکانی روند و نقطهی شکست در سری زمانی تبخیر-تعرق مرجع برای فصلهای مختلف سال در استان مازندران در یک دورهی 40 ساله (2020-1981) از دادههای شبکهای ماهوارهای (با وضوح حدود 5 کیلومتر) استفاده شد. جهت بررسی تغییرات روند و ارائه پهنهی تغییرات نقطهی شکست در تبخیر-تعرق از آزمونهای ناپارامتری من-کندال، شیب سن، پتیت و رگرسیون چندک استفاده شد. ضریب همبستگی بین دادههای تبخیر-تعرق شبکهای با دادههای زمینی ایستگاهی در اغلب ایستگاهها بیش از 9/0 و میانگین مقدار اریب 24/0 برآورد شد. نتایج آزمون پتیت، بیشترین زمان وقوع تغییرات ناگهانی در تبخیر-تعرق مرجع در فصلهای بهار، پاییز و زمستان را به ترتیب در سالهای 2013، 2010-2007 و 1999 نشان داد. مقادیر بالای تبخیر-تعرق برای فصلهای بهار در نیمهی شرقی، برای تابستان در نیمهی شمالی و برای زمستان در نوار جنوبی و غربی افزایش (به ترتیب با درصد شیب فصلی 45، 75 و 120 درصد) اما برای فصل پاییز در شمال استان کاهش (با شیب 45- درصد) یافته است. بهطورکلی نرخ شیبهای معنیدار افزایشی برای مقادیر بالای تبخیر-تعرق بیشتر از میانگین بوده است. افزایش قابلتوجه مقادیر بالای تبخیر-تعرق بهویژه در فصل خشک سال، موجب کاهش منابع آب و اختلال در بخش کشاورزی خواهد شد. بنابراین باید روشهای علمی و عملی برای مدیریت تبخیر-تعرق مرجع در سطح استان لحاظ شود. | ||
کلیدواژهها | ||
تبخیر-تعرق؛ روند؛ زمانی-مکانی؛ نقطه شکست؛ مقادیر حدی | ||
عنوان مقاله [English] | ||
Spatial Analysis of Changes and Detection of Jump of Monthly Evapotranspiration Time Series in Mazandaran | ||
نویسندگان [English] | ||
Reza Norooz Valashedi1؛ Sedigheh Bararkhanpour-Ahmadi2 | ||
1Assistant Professor, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran. | ||
2PhD student of Agricultural Meteorology, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran | ||
چکیده [English] | ||
Reference evapotranspiration as an important indicator of demand for air evaporation is an important factor for climatic and hydrological studies. Due to the occurrence of climate change and the occurrence of large fluctuations in precipitation and the occurrence of mild to severe droughts, it is important to study the evapotranspiration changes. In this study, to investigate the temporal-spatial changes of trend and change point in the reference evapotranspiration time series for different seasons in Mazandaran province, 40 years data (1981-2020) from satellite networks (with a resolution of about 5 km) were used. Non-parametric Mann-Kendall, Sen's slope, Pettitt's test (Non-Parametric Rank Test) and quantile regression were used to investigate the changes in the trend and to present the range of fracture point changes in the evapotranspiration. The correlation coefficient between network evaporation-transpiration data and ground station data was estimated to be more than 0.9 in most of the stations and the average value of BIAS was 0.24. The results of Pettitt's test showed the time of sudden changes in reference evapotranspiration in spring, autumn and winter seasons in 2013, 2007-2010 and 1999, respectively, in most cases. Very high values of evapotranspiration increased in spring in the eastern half, in summer in the northern half and in winter in the southern and western strips (with a seasonal slope percentage of 45, 75 and 120 percent, respectively), but they decreased in autumn in the north of the province (with a slope of -45 percent). In general, significantly increasing slope rates for high values of evapotranspiration were higher than average. A significant increase in high amounts of evapotranspiration, especially in the dry season, will reduce water resources and disrupt the agricultural sector. Therefore, scientific and practical methods for managing reference evapotranspiration in the province should be considered. | ||
کلیدواژهها [English] | ||
Evapotranspiration, Temporal - Spatial Trend, Change Point, Extreme Values | ||
مراجع | ||
Abatzoglou, J. T., Dobrowski, S. Parks S. A. and Hegewisch. K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 170191. Alashan, S. (2020). Combination of modified Mann‐Kendall method and Sen innovative trend analysis. Engineering Reports, 2(3), e12131. Asadi, M. and Karami, M. (2020). Estimation of evapotranspiration in Fars province using experimental indicators. Scientific Journals Management System, 20(56), 159-175. (In Persian). Babolhekami, A., Gholami Sefidkouhi. M. A. and Emadi, A. (2020). The impact of climate change on reference evapotranspiration in Mazandaran province. Iranian Journal of Soil and Water Research, 51(2), 387-401. (In Persian). Bakhtiari, B., Mahdavi, N. and Sayari, N. (2021). Variations and sensitivity analysis on Aridity Index (AI) in some climate samples in Iran. Iran-Water Resources Research, 17(1), 1-15. (In Persian). Faghani, M., Ghorbani, K. and Salarijazi, M. (2017). Trend and change point analysis of seasonal SPI drought index in Iran. Iranian Journal of Irrigation and Drainage, 11(4), 667-679. (In Persian). Farsadnia, F., Rostami Kamrod, M. and Moghadam Nia, A. (2012). Rainfall trend analysis of Mazandaran province using regional Mann-Kendall test. Iran-Water Resources Research, 8(2), 60-70. (In Persian). Ferraz Do Nascimento, F. and Bourguignon, M. (2020). Bayesian time‐varying quantile regression to extremes. Environmetrics, 31(2), e2596. Gholami, A. Habibnejad Roshan, M. Shahedi, K. Vafakhah, M. and Solaymani, K. (2018). Future Impacts of Climate Change on Actual Evapotranspiration and Soil Water in the Talar Watershed in Mazandran Province. Physical Geography Research Quarterly, 50(3), 511-529. (In Persian). Ghorbani, H., vali, A. A. and zarepour, H. (2019). Analysis of the climatological drought trend variations using Mann-Kendall, Sen and Pettitt tests in Isfahan province. Journal of spatial analysis environmental hazarts, 6(2), 129-146. (In Persian). Ghorbani, K., Bararkhan Poor, S. Valizadeh, E. and Molaarazi, A. (2020). Regional analysis of trend and change point in seasonal series of SPEI drought index in Iran. Journal of Water and Soil Conservation, 27(4), 185-200. (In Persian). Golshan, S. (2016). Investigation and detection effects of global warming on soil temperature trends and its estimated regression correlation (case study: Kerman). Journal of Water and Soil Conservation, 22(4), 121-138. (In Persian). Hamed, K. H. and Rao, A. R. (1998). A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology, 204, 182-196. Han, J., Wang, J. Zhao, Y. Wang, Q. Zhang, B. Li, H. and Zhai, J. (2018). Spatio-temporal variation of potential evapotranspiration and climatic drivers in the Jing-Jin-Ji region, North China. Agricultural and Forest Meteorology, 256, 75-83. Hosseini-Moghari, S., Araghinejad, S. and Ebrahimi, K. (2019). Application of GRACE satellite observations in drought monitoring (case study: Markazi Basin, IRAN). Iran-Water Resources Research, 15(1), 92-103. (In Persian). Hounguè, R., Lawin, A. E. Moumouni, S. and Afouda, A. A. (2019). Change in climate extremes and pan evaporation influencing factors over Ouémé Delta in Bénin. Climate, 7(2), 1-22. Jhajharia, D., Gupta, S. Mirabbasi, R. Kumar, R. and Patle, G. T. (2021). Pan evaporative changes in transboundary Godavari River basin, India. Theoretical and Applied Climatology, 145(3), 1503-1520. Kalisa, W., Igbawua, T. Ujoh, F. Aondoakaa, I. S. Namugize, J. N. and Zhang, J. (2021). Spatio-temporal variability of dry and wet conditions over East Africa from 1982 to 2015 using quantile regression model. Nat Hazards, 106, 2047-2076. Kanani, R., Fakheri-Fard, A. Ghorbani, M. and Dinpashoh, Y. (2019). Trend analysis of gradual and rapid variations of hydro-climatological factors (case study: Lighvanchai basin). Water and Soil Science, 29(1), 97-110. (In Persian). Kendall. M. G. (1975). Rank correlation methods. Oxford: Oxford University Press. Koenker, R. (2005). Quantile regression. first ed, New York, Cambridge University Press, 1-25. Koenker, R. (2018). Quantreg: Quantile regression and related methods. Version 5.54. R package, https://cran.r-project.org/web/packages/quantreg/quantreg.pdf Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245-259. Miri, M., Azizi, G. Mohammadi, H. and Pourhashemi, M. (2018). Introduction and evaluation of global model of land data assimilation. Scientific- Research Quarterly of Geographical Data (SEPEHR), 26(104), 5-17. (In Persian). Moosavi, A. (2020). Spatial zoning of pan evaporation and affecting variables using geostatisitc methods (case study: Fars province). Journal of Agricultural Meteorology, 7(2), 44-54. (In Persian). Nouri, M. Homaee, M. and Bannayan, M. (2017). Assessing reference evapotranspiration changes during the 21st century in some semi-arid regions of Iran. Iranian Journal of Soil and Water Research, 48(2), 241-252. (In Persian). Pandey, B. K. and Khare, D. (2018). Identification of trend in long term precipitation and reference evapotranspiration over Narmada River basin (India). Global and planetary change, 161, 172-182. Peng, L., Li, Y. and Feng, H. (2017). The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China. Scientific reports, 7(1), 1-19. Pettitt, A. N. (1979). A non-parametric approach to change point problem. Journal of the Royal Statistical Society: series C (Applied Statistics), 28(2), 126-135. Pour, S. H., Abd Wahab, A. K. Shahid, S. and Ismail, Z. B. (2020). Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmospheric Research, 246, 105096. Razaghian, H, Kaka, S. Ali H. G. R. and Ahmad K. P. S. (2014). The study of climate change in Mazandaran province using the limit indices of temperature and precipitation. Journal of Biodiversity and Environmental Sciences, 5(1), 14-22. Sen, P. K. (1968). Estimates of the regression coefficients based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379-1389. Shah, L. Arnillas, C. A. and Arhonditsis, G. B. (2022). Characterizing temporal trends of meteorological extremes in Southern and Central Ontario, Canada. Weather and Climate Extremes, 35, 100411. Sheidaeian, M., Ziatabar Ahmadi, M. and Fazloula, R. (2016). Study on climate change effect on net irrigation requirement and yield for rice crop (case study: Tajan plain). Water and Soil, 28(6), 1284-1297. (In Persian). Solaimani, K. (2022). Seasonal relationship between climatic variables and evaporation based on Bayesian quantile regression method in southern Caspian region. Arabian Journal of Geosciences, 15(10), 1-17. Solaimani, K. and Bararkhanpour, S. (2022). Spatiotemporal changes of climatic parameters extreme quantiles and their role on evaporation in N. Iran (Golestan province). Arabian Journal of Geosciences, 15(68), 1-16. Susanti, I. Sipayung, S. B. Siswanto, B. Maryadi, E. Latifah, H. Nurlatifah, A. Supriatin, L. S. Witono, A. and Suhermat, M. (2021). Implications of extreme events on the water balance in Java. In AIP Conference Proceedings, 2331(1), 030008(1-8). Yazdani, V. Liaghat, A. Noori, H. Noori, H. and Zare Abianeh, H. (2011). A Determination of the best model for calculation of pan coefficient in amol as based on sensitivity analysis. Iranian Journal of Soil and Water Research, 42(1), 9-17. (In Persian). Zare-Abyaneh, H. and Esmaeili, S. (2021). Evaluation of pan coefficient estimation methods to calculate the amount of evapotranspiration (case study of Kurdistan province). Iranian Journal of Soil and Water Research, 52(2), 329-344. (In Persian). Zhang, X. Vincent, L. A. Hogg, W. D. and Niitsoo, A. (2000). Temperature and rainfall trends in Canada during the 20th century. Atmospheric Ocean 38, 395-429.
| ||
آمار تعداد مشاهده مقاله: 348 تعداد دریافت فایل اصل مقاله: 322 |