![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,033 |
تعداد مشاهده مقاله | 125,502,736 |
تعداد دریافت فایل اصل مقاله | 98,766,901 |
ارزیابی برخی شاخصهای تکامل خاک در خاکهای متأثر از سنگهای رسوبی و آذرین شمال کرمان | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 1، فروردین 1402، صفحه 85-103 اصل مقاله (2.59 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.352148.669407 | ||
نویسندگان | ||
الهام سلیمانی ساردو1؛ محمد هادی فرپور* 1؛ مجید محمودآبادی*2؛ اعظم جعفری3 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
2گروه علوم و مهندسی خاک،دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
3گروه علوم و مهندسی خاک، دانشکده کشاورزی-دانشگاه شهیدباهنر کرمان، کرمان، ایران | ||
چکیده | ||
مطالعه حاضر با هدف بررسی تکامل خاک در خاکرخهای توسعهیافته از مواد مادری آذرین و رسوبی شمال کرمان انجام شده است. جهت نیل به هدف مذکور تعداد 4 خاکرخ در منطقه مورد مطالعه حفر و تشریح گردید و نمونههای خاک جهت انجام آزمایشات فیزیکوشیمیایی و بررسی عوارض میکرومورفولوژیک برداشت شدند. مقادیر اکسیدهای اصلی توسط دستگاه ICP-OES اندازهگیری شد. میزان تکامل خاکرخهای مورد مطالعه با استفاده از شاخصهای رنگ، تجمع رس، مقادیر آهن و شاخصهای ژئوشیمیایی ارزیابی شد. خاکرخهای مطالعاتی در راسته اریدیسول بوده که غالبا دارای افقهای کلسیک، ژیپسیک و آرجیلیک میباشند. میانگین مقادیر آهن پدوژنیک، آزاد، بلوری و فعال در نمونههای مورد مطالعه به ترتیب برابر با 4/9، 5/0، 8/8 گرم بر کیلوگرم و 06/0 میباشد. مقادیر شاخصهای تجمع رس و آهن به ترتیب از مقدار 17 در خاکرخ 3 تا 5/76 در خاکرخ 2 و مقدار 24344 در خاکرخ 2 تا 2788 در خاکرخ 3 بهدست آمد. نتایج بیانگر همبستگی در سطح 99 درصد بین مقادیر آهن و شاخصهای رنگ بود. میانگین وزنی اکسیدهای اصلی افزایش محسوسی در خاکرخهای 1 و 3 نسبت به سایر خاکرخها داشت. تمامی شاخصهای ژئوشیمیایی، به جز WIP، شدت هوادیدگی بالاتری را در خاکرخهای 1 و 3 نشان دادند. نتایج بررسی شاخصهای رنگ، تجمع اکسید آهن و رس و شاخصهای ژئوشیمیایی CIW، CIA،PWI ، V، PIA، STI و R در منطقه مطالعاتی تکامل بالاتر خاکرخ 3 در مقایسه با سایر خاکرخها را اثبات کرد. تفاوت محسوسی در شدت هوادیدگی با تغییر مواد مادری مشاهده نشد. بنابراین تغییرات در میزان تکامل خاکرخهای مطالعاتی نتیجه تأثیر متقابل نوع موادمادری و عوامل و فرایندهای خاکسازی میباشند. | ||
کلیدواژهها | ||
ایران مرکزی؛ پوشش رسی؛ رنگ خاک؛ ژئوشیمی | ||
عنوان مقاله [English] | ||
Evaluation of selected soil development indices in soils derived from sedimentary and igneous rocks, northern Kerman | ||
نویسندگان [English] | ||
Elham Soleimani Sardoo1؛ Mohammad Hady Farpoor1؛ Majid Mahmoodabadi2؛ Azam Jafari3 | ||
1Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran | ||
2Department of Soil Science, Faculty of Agriculture Faculty, Shahid Bahonar University of Kerman, Kerman, Iran | ||
3Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده [English] | ||
The present research performed to investigate soil evolution in soils developed on sedimentary and igneous parent materials, northern Kerman. Four representative pedons were selected. Physicochemical properties and Micromorphological features investigated in soil samples. The principal oxides content measured using ICP-OES. Color, clay accumulation, Fe content, and geochemical indices were used to assess soil development in the studied pedons. Studied profiles classified in Aridisols order and Calcite, Gypsic and Argillic horizons were dominant. Mean of pedogenic, free, crystalline, and active Fe contents were determined as 9.4, 0.5, 8.8 g/kg and 0.06, respectively. The values of clay and Fe accumulation indices were obtained 17 (in pedon 3) to 76.5 (in pedon 2) and 24344 (in pedon 2) to 2788 (in pedon 3), respectively. The results showed the correlation between Fe contents and color indices at the 99% level. The mean weight of principal oxides noticeably increased in pedons 1 and 3 compared to other studied pedons. All of geochemical indices, except WIP, showed higher weathering in pedons 1 and 3.The results of color, Fe oxides and clay accumulation and CIW, CIA, PWI, V, PIA, STI and R geochemistry indices demonstrated higher evolution of pedon 3 compared to other studied soils. No significant difference in development rate reated to parent materials change was found. Likely, various evolution of studied pedons was due to intractions among geochemical indices and soil-forming factors and processes. | ||
کلیدواژهها [English] | ||
Central Iran, Clay Coating, Geochemistry. Soil color | ||
مراجع | ||
Abbaslou, H., Abtahi, A., & Baghernejad, M. (2013). Effect of weathering and mineralogy on the distribution of major and trace elements (Hormozgan province, Southern Iran). International Journal of Forest, Soil and Erosion (IJFSE). Vol (3). No 1. 15-25. Azadi, A., Baghernejad, M., Gholami, A., & Shakeri, S. (2021a). Forms and distribution pattern of soil Fe (Iron) and Mn (Manganese) oxides due to long-term rice cultivation in fars Province Southern Iran. Communications in Soil Science and Plant Analysis, 52(16), 1894-1911. Azadi, A., Shakeri, S., & Zareian, Gh. (2021b). the effect of landform units on the origin and distribution of extractable forms of iron oxide, a case study, Rostam city, Fars province, the 17th soil Sciences Congress and the 4th National Conference on Farm Water Management, 18-20 October, Karaj, Iran. (in Persian) Banaie, M. H. (1998). Soil moisture and temperature regimes map of Iran. Soil and Water Research Institute, Ministry of Agriculture, Tehran, 1 sheet. (in Persian) Birkeland, P. W., Burke, R. M., & Benedict, J. B. (1989). Pedogenic gradients for iron and aluminum accumulation and phosphorus depletion in arctic and alpine soils as function of time and climate. Quaternary Research, Vol. 32, 2, 193-204. Birkland, P. W. (1991). Soils and geomorphology. Oxford Universit Press, New York. Bluth, G. J. S., & Kump, L. R. (1994). Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta. 58(10): 2341-2359. Bockheim, J. G., & Hartemink, A. E. (2013). Distribution and classification of soils with clay-enriched horizons in the USA. Geoderma. 209-210: 153-160. Buck, B. J., & Van Hoesen, J. G. (2002). Snowball morphology and SEM analysis of pedogenic gypsum, southern New Mexico, USA. Journal of Arid Environments, 51 (4), 469-487. Caspari, T., Bäumler, R., Norbu, C., Tshering, K., & Baillie, I. (2006). Geochemical investigation of soils developed in different lithologies in Bhutan, Eastern Himalayas. Geoderma 136: 436-458. Chapman, H. D. (1996). Cation excahange capacity. In: Black, C. A. (eds), Methods of Soil Analysis, part 2. Am. Soc. Agron. Madison, Wisconsin, USA. Daher, M., Fernandes-Filho, E. I., Francelino, M. R., Marciano da casta, L., & Schaefer, C. E. G. R. (2022). Geochemistry of semi-arid Cryosols on volcanic and sedimentary materials from James Ross Island, Antarctica. Geoderma Regional, (28). Duzgoren-Aydin, N. S., Aydin, A., & Malpas, J. (2002). Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Engineering Geology, 63(1-2): pp. 99-119. Evans, M. E., & Heller, F. (2003). Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic Press, Amsterdam. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleo weathering conditions and provenance. Geology, 23, 921–924. https://doi.org/10.1130/0091-7613(1995)023<0921: UTEOPM>2.3.CO;2. Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 383-411. Habibi, E., Lak, R., Torabi, H., Mahmoudi, Sh., & Momtaz, H. (2019). Investigating the relationships between chemical indices of soil development and weathering in various parent Materials in Urmia Lake catchment. Carpathian Journal of Earth and Environmental Sciences, Vol. 14, No. 1, p. 209 - 221; DOI:10.26471/cjees/2019/014/073 Harnois, L. (1988). The CIW index: a new chemical index of weathering Sediment. Geol. (55), 319–322. Heidari, A., & Osat, M. (2019). Quantifying geochemical indices and their use as criteria in soil development and classification. 16th Iranian Soil Science Congress. University of Zanjan, Iran, August 27-29. (In Persian) Heidari, A., & Raheb, A. (2020). Geochemical indices of soil development on basalt rocks in arid to sub-humid climosequence of Central Iran. Journal of Mountain Science, (17). https://doi.org/10.1007/s11629-019-5862-4 Hu, X., Xu, L., & Shen, M. (2009). Influence of the aging of Fe oxides on the decline of magnetic susceptibility of the Tertiary red clay in the Chinese Loess Plateau. Quaternary International, (209), 1-9. Iran Geology Organization. (1995). Kerman, Ravar and Rafsanjan Map 1:250000 and Shahr-e-Babak 17 Map 1:100000. Tehran Map Publication, Tehran, Iran. (In Persian) Islam, M. R., Stuart, R., Risto, A., & Vesa, P. (2002). Mineralogical changes during intense chemical weathering of sedimentary rocks in Bangladesh. Journal of Asian Earth Sciences 20(8): 889-901. Jayawardena, U. S., & Izawa, E. (1994). A new chemical index of weathering for metamorphic silicate rocks in tropical regions: A study from Sri Lanka. Engineering Geology, 36: 303-310. Khademi, H., & Mermut, A. R. (1998). Source of palygorskite in gypsiferous aridisols and associated sediments from central Iran. Clay Miner. 33: 561-578. Khormali, F., Abtahi, A., Mahmoodi, S., & Stoops, G. (2003). Argillic horizon development in calcareous soils of arid and semiarid regions of southern Iran. Catena. (53). p: 273-301. Koop, A. N., Hirmas, D. R., Sullivan, P. L., & Mohammed, A. K. (2020). A generalizable index of soil development. Geoderma. (360). 113898. Krzeszowska, E. (2019). Geochemistry of the Lublin Formation from the Lublin Coal Basin: Implications for weathering intensity, palaeoclimate and provenance. International Journal of Coal Geology. 216, 103306. Kuznetsova, A., & Khokhlova, O. (2015). Dynamics and genesis of calcic accumulations in soils and sediments of the Argentinean Pampa. International Journal of Sediment Research. (30). P: 179–189. Levine, E. R., & Ciolkosz, E. J. (1983). Soil development in till of various ages in northeast Pennsylvania. Quaternary International. (19). p: 85-99. Lui, J., Lichao, W., Chen, D., Yu, Z., & Wei, C. (2018). Development of a soil quality index for Camellia oleifera forestland yield under three different parent materials in Southern China. Soil and Tillage research. (176). P 45-50. Markus, E., & Merkli, C. (2007). Weathering, mineralogical evolution and soil organic matter along a Holocene soil toposequence developed on carbonate-rich materials. Geomorphology. (97). p: 675-696. Mehra, O., & Jackson, P. (1958). Iron oxide removal from soils and clays in a dithionite-citrate-bicarbonate system buffered with sodium. Clay. Clay Miner. 7:317–327 Mei, H., Jian, X., Zhang, W., Fu, H., & Zhang, S. (2021). Behavioral differences between weathering and pedogenesis in a subtropical humid granitic terrain: Implications for chemical weathering intensity evaluation. Catena. (203). Montakhabi Kalajahi, V., Jafarzadeh, A. A., & Rezaei, H. (2016). Comparsion of different soils evolution based on Argillic horizon development. Journal of Water and Soil Science. Vol (27) 1. Pp: 253-265. (In Persian) Moore, T. R. (1973). The distribution of Fe, Mn, and Al in some soils from northeast Scotland. Journal of Soil Science. (24). p: 165-171. Nael, M., Jalalian, A., Khademi, H., Kalbasi, M., Sotohian, F., & Schulin, R. (2010). Parent Material and soil evolution effect in forest soils geochemical properties, Fooman-Masooleh region. Journal of Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources). Vol (14). No 54. (In Persain) Nafeh, M. H., & Brussel, M. K. (1985). Electricity and magnetism. John Wiley, New York, NY. Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In: Page, A. L., Miller, R. H., & Keeney, D. R. (eds.), Methods of Soil Analysis: Part 2 – Chemical and Microbiological Properties (2nd edition). A Series of Monograph: Vol. 9, American Society of Agronomy, Soil Science Society of America, Madison, p: 539–577. https://doi.org/10.2134/agronmonogr9.2.2ed.c29. Nelson, R. E. (1982). Carbonate and gypsum. In: Page, A. L., Miller, R. H., & Keeney, D. R. (eds.), Methods of Soil Analysis: Part 2 – Chemical and Microbiological Properties (2nd edition). A Series of Monograph: Vol. 9, American Society of Agronomy, Soil Science Society of America, Madison. p: 181–196. https://doi.org/10.2134/agronmonogr9.2.2ed. c11. Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta Journal. 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3 Owliaie, H. R., & Najafi Ghiri, M. (2018). The Magnetic Susceptibility and Iron Oxides of Aquic Soils in Southern Iran. Eurasian Soil Science. 51(10), 1252–1265. http://link.springer.com/10.1134/S1064229318100095. Owliaie, H. R., Abtahi, A., & Heck, R. (2006). Pedogenesis and clay mineralogical investigation of soils formed on gipsiferous and calcareous materials, on a transect, southwestern Iran. Geoderma. (134). p: 62-81. Oyebanjo, O. O., Ekosse, G. E., & Odiyo, J. O. (2021). Mineralogy and geochemistry of clay fractions in soils developed from different parent rocks in Limpopo Province, South Africa. Heliyon, 7. Page, A., Miller, R., & Keeney, D. (1982). Methods of soil analysis, Part 2: Chemical and microbiological properties 2nd ed Madison, Wisconsin, USA. Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine. 107, 501–504. https://doi.org/10.1017/S0016756800058581. Pasquini, A. I., Campodonico, V. A., Rouzaut, S., & Giampaoli, V. (2017). Geochemistry of a soil catena developed from loess deposits in a semiarid environment, Sierra Chica de Córdoba, central Argentina. Geoderma. (295). p: 53–68. Roaldset, E. (1972). Mineralogy and Geochemistry of Quaternary Clays in the Numedal Area, Southern Norway. Norsk. Geolisk. Tidsskrift. 52, 335–369. Ruxton, B. P. (1968). Measures of the degree of chemical weathering of rocks. Journal of Geology, 76: 518-527. Santana, D. P. (1984). Soil formation in a toposequence of oxisols from patos de minas regions, Minas Gerais State, Brazil. Ph.D. Thesis. Purdue University., west Lafayette, IN. Schaetzl, R.J., & Thompson, M. L. (2015). Soils genesis and geomorphology. Pub: Cambridge University, Cambridge. Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., & Soil Survey Staff. (2012). Field Book for Describing and Sampling Soils, version 3. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, 300 p. Schwertmann, U. (1973). Use of oxalate for Fe extraction from soils. Canadian Journal of Soil Science. (53). p: 244–246. Shakeri, S., Azadi, A., & Saffari, M. (2021). Effect of Climate and Soil Development on the Quantity and Chemical Forms Distribution of Iron, Copper, Zinc and Manganese Micronutrients in the Dominant Soil Orders of Kohgiluyeh and Boyerahmad Province. JWSS - Journal of Water and Soil Science- Isfahan University of Technology 24 (4) :273-293. (in Persian) Shao, J., Yang, S., & Li, C. (2012). Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: inferences from analysis of fluvial sediments. Sedimentary Geology Journal. 265–266, 110–120. https://doi.org/10.1016/j.sedgeo.2012.03.020. Simon, M., Sanchez, S., & Garcıa. I. (2000). Soil-landscape evolution on a Mediterranean high mountain. Catena, 39,211–231. Singh, L. P., Parkash, B., & Singhvi, A. K. (1998). Evolution of the Lower Gangetic Plain landforms and soils in West Bengal, India. Catena, 33, 75-104. Souri, B., Watanabe, M., & Sakagami, K. (2006). Contribution of Parker and Product indexes to evaluate weathering condition of Yellow Brown Forest soils in Japan. Geoderma 130(3-4): 346-355. https://doi.org/10.1016/j.geoderma.2005.0 Stoops, G. (2003). Guideline for the analysis and description of soil and regolith thin sections. SSSA, Madison, WI.182p. Tazikeh, H., Khormali, F., Amini, A., & Barani Motlagh, M. (2018). Geochemistry of soils derived from selected sedimentary parent rocks in Kopet Dagh, North East Iran. Journal of Geochemical Exploration. (194). P: 52-70. Tematio, P., Tchaptchet, T. W., Nguetnkam, J. P., Mbog, M. B., & Yongue-Fouateu, R. (2017). Mineralogical and geochemical characterization of weathering profiles developed on mylonites in the Fodjomekwet-Fotouni section of the Cameroon shear zone (CSZ), West Cameroon. Journal of African Earth Sciences. 131, 32–42. Torrent, J., Schwertmann, U., & Schulz, D. G. (1980). Iron oxides mineralogy of some soil of two river terrace in spain. Geoderma. (23). p: 191-208. Torrent, J., Schwertmann, U., Fechterand, H., & Alferez, F. (1983). Quantitative relationship between soil color and hematite content. Journal of Soil Science. (136). p: 354-358. Vacca, S., Capra, G. F., Coppola, E., Rubino, M., Madrau, S., & Colella, A. (2009). From andic Non- allophanic to non-andic allophanic Inceptisols on alkaline basalt in Mediterranean climate, a toposequence study in the Marghina district (Sardinia, Italy). Geoderma. (151). p: 157-167. Yousefifard, M., Ayoubi, Sh., Jalalian, A., Khademi, H., & Makkizadeh, M. A. (2012). Mass Balance of Major Elements in Relation to Weathering in Soils Developed on Igneous Rocks in a Semiarid Region, Northwestern Iran. Journal of Mountain Science, 9: 41-58. DOI: 10.1007/s11629-012-2208-x | ||
آمار تعداد مشاهده مقاله: 307 تعداد دریافت فایل اصل مقاله: 264 |