تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,892 |
تعداد دریافت فایل اصل مقاله | 97,231,085 |
ارزیابی فراوانی آللی مطلوب ژن عمده تحت تداخل و نبود تداخل نسل: مطالعهای مبتنی بر شبیهسازی | ||
علوم دامی ایران | ||
دوره 55، شماره 1، فروردین 1403، صفحه 71-79 اصل مقاله (1.17 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2023.346498.653901 | ||
نویسندگان | ||
میثم لطیفی1؛ یوسف نادری* 2 | ||
1گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان، کردستان، ایران | ||
2گروه علوم دامی، واحد آستارا ، دانشگاه آزاد اسلامی، آستارا، ایران | ||
چکیده | ||
یکی از صفات مهم اقتصادی در گوسفند چندقلوزایی میباشد. این صفت تحت تأثیر بعضی از ژن ها با اثر بزرگ میباشد. هدف از مطالعه حاضر ارزیابی انواع طرحهای انتخابی برای تثبیت آللی مطلوب ژن عمده در صفت چندقلوزایی تحت سناریوهای تداخل و نبود تداخل نسل بود. بدین منظور یک صفت چندقلوزایی با وراثتپذیری 1/0، متشکل از 26 کروموزوم و یک ژن عمده در جمعیت گوسفند شبیهسازی شد. ارزش اصلاحی حیوانات با استفاده از مدل آستانهای بیزی پیشبینی شد. انتخاب حیوانات بر اساس ارزش اصلاحی (EBV)، فنوتیپی برتر (PHEN) و تصادفی (RND) بود. پیشرفت ژنتیکی بعد از ده نسل انتخاب در طرحهای انتخابی EBV، PHEN و RND تحت سناریوی نبود تداخل نسل نسبت به سناریوی وجود تداخل نسل، به ترتیب 8، 23 و 26 درصد بیشتر بود. صحت ارزیابی در سناریوی تداخل نسل در مقایسه با سناریوی نبود تداخل نسل بیشتر بود. میانگین ضریب همخونی بعد از ده نسل انتخاب در سناریوی تداخل نسل برای طرحهای انتخابیEBV، PHEN و RND به ترتیب 317/0، 029/0 و 027/0 و برای سناریوی نبود تداخل نسل به ترتیب 327/0، 058/0 و 056/0 بود. در سناریوی نبود تداخل نسل فراوانی آللی مطلوب در طرحهای انتخابی EBV، PHEN و RND به ترتیب یک، 46 و 38 درصد نسبت به سناریوی تداخل نسل بیشتر بود. نتایج نشان داد که سناریوی نبود تداخل نسل با استفاده از طرح انتخابی EBV منجر به تثبیت آللی مطلوب ژن عمده و پیشرفت ژنتیکی بیشتری میشود. | ||
کلیدواژهها | ||
طرح انتخابی؛ پیشرفت ژنتیکی؛ صحت ارزیابی | ||
عنوان مقاله [English] | ||
Evaluation of frequency of the favorable allele of major gene under overlapping and discrete generation: A study based on simulation | ||
نویسندگان [English] | ||
Maysam Latifi1؛ Yousef Naderi2 | ||
1Collage of Agriculture, Department of Animal Science, University of Kurdistan, Kurdistan, Iran. | ||
2Department of Animal Science, Astara Branch, Islamic Azad University, Astara, Iran | ||
چکیده [English] | ||
Litter size (LS) is one of the important economic traits in sheep . This trait is influenced by some genes with a large effect. The purpose of this simulation study was to evaluate the fixation selection designs for favorable major gene allele under scenarios of overlapping and discrete generations. In this regard, a trait with heritability of 0.1, and a genome with 26 chromosomes and a major gene was simulated in sheep population. Animals breeding value was predicted using Bayesian threshold model. Selection of animals was based on estimated breeding value (EBV), phenotype (PHEN) and random (RND). After ten generations, genetic gain in selection based on EBV, PHEN and RND under scenario of discrete generation were 8, 23 and 26 percent higher than those in scenario of overlapping generation, respectively. The accuracy of prediction in scenario of discrete generation was higher than scenario of overlapping generation. Means of inbreeding coefficient under scenario of overlapping generation and selection for EBV, PHEN and RND were 0.317, 0.029 and 0.027, respectively, and for scenario of discrete generation were 0.327, 0.058 and 0.056, respectively. In generation ten, the favorable allele of the major gene, in scenario of discrete generation selection based on EBV, PHEN and RND was 1, 46 and 38 percent higher than those in the scenario of overlapping generation, respectively. The results indicated that the scenario of discrete generation selection based on EBV leads to more fixation the favorable allele of the major gene and of genetic gain. | ||
کلیدواژهها [English] | ||
Selection designs, Genetic gain, Accuracy of prediction | ||
مراجع | ||
Asadpour, R., Jafari-Joozani, R., Alijani, S. & Mahmodi, H.(2012). Detection of polymorphism in booroola gene (FecB) and its association with litter size in Zel sheep breed in Iran. Slovak Journal of Animal Science, 45, 63-66. Bodin, L., Martin, P. M. & Raoul, J. (2014). Effects of the FecL Major Gene on Mean and Variance of Litter Size in the Lacaune Meat Sheep Population. Proceedings, 10th World Congress of Genetics Applied to Livestock Production, Vancouver, Canada. Brisbane, J.R & Gibson, P. J. (1995). Balancing selection response and rate of inbreeding by including genetic relationships in selection decisions. Theoretical and Applied Genetics, 91, 421–431. Clark, S.A., Hickey, J.M., Daetwyler, H.D & van der Werf, J.H. (2012). The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genetics Selection Evolution, 44:4. Drouilhet, L., Lecerf, F., Bodin, L., Fabre, S. & Mulsant, P. (2009). Fine mapping of the FecL locus influencing prolificacy in Lacaune sheep. Animal Genetics, 40, 804–812. Elsen, J. M., Bodin, L., Francois, D.,Poivey, J. P. & Teyssier, J. (1994). Genetic improvement of litter size in sheep, Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, 237-244 pp., Guelph, Ontario, Canada. Enayati, B.,Rashidi, A., Abdollahi-Arpanahi, R. & Razmkabir, M. (2019). The evaluation of breeding strategies in Mazandaran native fowls using computer simulation. Iranian Journal of Animal Science, 49(4), 481-494. (In Farsi) Eteqadi, B., GhaviHossein-Zadeh, N. & Shadparvar, A. A. (2017). Genetic analysis of basic and composite reproduction traits in Guilan sheep. Annals of Animal Science, 17, 105-116. Falconer, D.C and Mc Kay, T. F C. (2004). Introduction toQuantitative Genetics. Addison WesleyLongman (Pearson Education). Hadfield, J.D & Nakagaw, S. (2010). General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23, 494-508. Latifi, M., Rashidi, A., Abdollahi-Arpanahi, R. & Razmkabir, M. (2020). Comparison of different selection methods for improving litter size in sheep using computer simulation. Spanish Journal of Agricultural Research, 18(1), e0403. Latifi, M., Alijani, S.,Taghizadeh, A. & Moghaddam, Gh. (2013). Comparison of different models to estimate of genetic parameters of litter size by Bayesian method in the Mehrabani sheep. Journal of Ruminant Researches, 1(1), 1-11.(In Farsi) Mahdavi, M., Nanekarani, S. & Hosseini, S.D. (2014). Mutation in BMPR-IB gene is associated with litter size in Iranian Kalehkoohi sheep. Animal Reproduction Science, 147, 93-98. Mokhtari, M.S., Rashidi, A. & Esmailizadeh, A. K. (2010). Estimates of phenotypic and genetic parameters for reproductive traits in Kermani sheep. Small Ruminant Research, 88, 27-31. Naderi, Y. & Latifi, M. (2019). Effect of mating designs on genetic gain and Increase of average inbreeding: A simulation study. Iranian Journal of Animal Science, 50(2), 115-120. (In Farsi) Nirea, K.G., Sonesson, A. K.,Woolliams, J.A. & Meuwissen, T.H. (2012). Effect of non-random mating on genomic and BLUP selection schemes. Genetics Selection Evolution, 44, 11. Pedersen, L.D., Sørensen, A.C. & Berg, P. (2009). Marker-assisted selection can reduce true as well as pedigree-estimated inbreeding. Journal of Dairy Science, 92, 2214–2223. Salehi, A., Rostami, F & Bakhtiari Zadeh, M.R. (2022). Study of B4GALNT2 (FecL) gene mutation by using High Resolution Melting (HRM) technique in Zandi sheep. Iranian Genetics Society, 17 (1): 87-90. Sargolzaei, M & Schenkel, F.S. (2009). QMSim: a large scale genome simulator for livestock. Bioinformatics, 25, 680-681. Sonesson, A & Meuwissen, T. (2002). Non-random mating for selection with restricted rates of: inbreeding and overlapping generations. Genetics Selection Evolution, 34(1), 23-39. Vinet, A., Drouilhet, L., Bodin, L., Mulsant, P., Fabre, S. & Phocas, F. (2012). Genetic control of multiple births in low ovulating mammalian species. Mammalian Genome, 23, 727-740. Hadfield, J.D & Nakagaw, S. (2010). General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23, 494-508. | ||
آمار تعداد مشاهده مقاله: 312 تعداد دریافت فایل اصل مقاله: 163 |